清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automatic Counting and Individual Size and Mass Estimation of Olive-Fruits Through Computer Vision Techniques

分割 背景(考古学) 计算机科学 人工智能 图像分割 图像处理 模式识别(心理学) 数学 计算机视觉 图像(数学) 地理 考古
作者
Juan Ponce,Arturo Aquino,Borja Millán,José Manuel Andújar
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 59451-59465 被引量:53
标识
DOI:10.1109/access.2019.2915169
摘要

Fruit grading is an essential post-harvest task in the olive industry, where size-and-mass based fruit classification is especially important when processing high-quality table olives. Within this context, this research presents a new methodology aimed at supporting accurate automatic olive-fruit grading by using computer vision techniques and feature modeling. For its development, a total of 3600 olive-fruits from nine varieties were photographed, stochastically distributing the individuals on the scene, using an ad-hoc designed an imaging chamber. Then, an image analysis algorithm, based on mathematical morphology, was designed to individually segment olives and extract descriptive features to estimate their major and minor axes and their mass. Regarding its accuracy for the individual segmentation of olive-fruits, the algorithm was proven through 117 captures containing 11 606 fruits, producing only six fruit-segmentation mistakes. Furthermore, by linearly correlating the data obtained by image analysis and the corresponding reference measurements, models for estimating the three features were computed. Then, the models were tested on 2700 external validation samples, giving relative errors below 0.80% and 1.05% for the estimation of the major and minor axis length for all varieties, respectively. In the case of estimating olive-fruit mass, the models provided relative errors never exceeding 1.16%. The ability of the developed algorithm to individually segment olives stochastically positioned, along with the low error rates of around 1% reported by the estimation models for the three features, makes the methodology a promising alternative to be integrated into a new generation of improved and non-invasive olive classification machines. The new developed system has been registered in the Spanish Patent and Trademark Office with the number P201930297.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huanghe完成签到,获得积分10
1秒前
zx完成签到 ,获得积分10
13秒前
14秒前
刘文思发布了新的文献求助10
21秒前
binfo完成签到,获得积分10
28秒前
S.S.N完成签到 ,获得积分10
31秒前
自然亦凝完成签到,获得积分10
40秒前
泡泡茶壶o完成签到 ,获得积分10
41秒前
beNana9完成签到,获得积分20
1分钟前
甜心椰奶莓莓完成签到 ,获得积分10
1分钟前
复杂的惜海完成签到,获得积分10
1分钟前
霜叶完成签到 ,获得积分10
1分钟前
嘟嘟52edm完成签到 ,获得积分10
1分钟前
huahua完成签到 ,获得积分10
1分钟前
1分钟前
几几完成签到,获得积分10
1分钟前
王磊完成签到 ,获得积分10
1分钟前
咯咯咯完成签到 ,获得积分10
2分钟前
可夫司机完成签到 ,获得积分10
2分钟前
fishss完成签到 ,获得积分10
2分钟前
sailingluwl完成签到,获得积分10
2分钟前
huiluowork完成签到 ,获得积分10
3分钟前
专注的觅云完成签到 ,获得积分10
3分钟前
lyj完成签到 ,获得积分10
3分钟前
姚芭蕉完成签到 ,获得积分0
3分钟前
Beyond完成签到,获得积分10
3分钟前
3分钟前
小布完成签到 ,获得积分0
3分钟前
研友_LN25rL完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
nano完成签到 ,获得积分10
4分钟前
4分钟前
上官若男应助等待夏旋采纳,获得10
4分钟前
时老完成签到 ,获得积分10
4分钟前
眯眯眼的安雁完成签到 ,获得积分10
4分钟前
bo完成签到 ,获得积分10
4分钟前
4分钟前
等待夏旋发布了新的文献求助10
4分钟前
老迟到的友桃完成签到 ,获得积分10
4分钟前
小瓢虫完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935628
求助须知:如何正确求助?哪些是违规求助? 4202915
关于积分的说明 13059095
捐赠科研通 3979341
什么是DOI,文献DOI怎么找? 2179701
邀请新用户注册赠送积分活动 1195702
关于科研通互助平台的介绍 1107514