Application of cascaded GAN based on CT scan in the diagnosis of aortic dissection

主动脉夹层 医学 鉴别器 放射科 人工智能 计算机科学 主动脉 心脏病学 电信 探测器
作者
Hongwei Chen,Sunang Yan,Mingxing Xie,Jianlong Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:226: 107130-107130 被引量:8
标识
DOI:10.1016/j.cmpb.2022.107130
摘要

Currently, Computed Tomography Angiography (CTA) is the most commonly used clinical method for the diagnosis of aortic dissection, which is much better than plain CT. However, CTA examination has some disadvantages such as time-consuming image processing, complicated procedure and injection of developer. CT plain scanning is widely used in the early diagnosis of arterial dissection because of its convenience, speed and popularity. In order not to delay the optimal diagnosis and treatment time of patients, we use deep learning technology and network model to synthesize plain CT images into CTA images. Patients can be timely professional related departments of clinical diagnosis and treatment, and reduce the rate of missed diagnosis. In this paper, we propose a CTA image synthesis technique for cardiac aortic dissection based on the cascaded generative adjunctive network model.Firstly, we registered CT images, and then used nnU-Net segmentation network model to obtain CT and CTA paired images containing only the aorta. Then we proposed a CTA image synthesis method for aortic dissection based on cascaded generative adversarial. The core idea is to build a cascade generator and double discriminator network based on DCT channel attention mechanism to further enhance the synthesis effect of CTA.The model is trained and tested on CT plain scan and CTA image data set of aortic dissection. The results show that the proposed model achieves good results in CTA image synthesis. In the CT data set, the nnU-Net model improves 8.63% and reduces 10.87mm errors in the key index DSC and HD, respectively, compared with the benchmark model U-Net. In CTA data set, nnU-Net model improves 10.27% and reduces 6.56mm error in key index DSC and HD, respectively, compared with benchmark model U-Net. In the synthesis task, the cascaded generative adm network is superior to Pix2pix and Pix2pixHD network models in both PSNR and SSIM, which proves that our proposed model has significant advantages.This study provides new possibilities for CTA image synthesis of aortic dissection, and improves the accuracy and efficiency of diagnosis, and hopes to provide substantial help for the diagnosis of aortic dissection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助ericzhouxx采纳,获得10
1秒前
方昊完成签到,获得积分10
1秒前
丘比特应助li采纳,获得10
1秒前
1秒前
小蘑菇应助Rsoup采纳,获得10
1秒前
L_Cheung完成签到,获得积分10
2秒前
星星完成签到,获得积分20
2秒前
十一发布了新的文献求助10
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
怡然的怜烟应助light采纳,获得10
4秒前
鸣风发布了新的文献求助10
4秒前
管琪娴发布了新的文献求助10
5秒前
Condor完成签到,获得积分10
5秒前
科研小白发布了新的文献求助10
5秒前
叮咚jingle发布了新的文献求助10
5秒前
所所应助体贴乐巧采纳,获得10
5秒前
5秒前
5秒前
所所应助xiang采纳,获得10
6秒前
hawz发布了新的文献求助10
6秒前
愉快白亦完成签到,获得积分10
6秒前
6秒前
星光不负赶路人完成签到,获得积分10
7秒前
7秒前
66677788完成签到,获得积分20
7秒前
7秒前
爆米花应助坚强丹雪采纳,获得10
7秒前
可可可11完成签到,获得积分10
7秒前
7秒前
9秒前
10秒前
11秒前
LB完成签到,获得积分10
11秒前
11秒前
领导范儿应助Druvis采纳,获得10
11秒前
66677788发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468720
求助须知:如何正确求助?哪些是违规求助? 4572113
关于积分的说明 14333499
捐赠科研通 4498847
什么是DOI,文献DOI怎么找? 2464734
邀请新用户注册赠送积分活动 1453361
关于科研通互助平台的介绍 1427921