A Physics-Constrained Bayesian neural network for battery remaining useful life prediction

预言 人工神经网络 电池(电) 人工智能 贝叶斯概率 计算机科学 机器学习 工程类 数据挖掘 物理 量子力学 功率(物理)
作者
David Najera-Flores,Zhen Hu,Mayank Chadha,Michael D. Todd
出处
期刊:Applied Mathematical Modelling [Elsevier BV]
卷期号:122: 42-59 被引量:30
标识
DOI:10.1016/j.apm.2023.05.038
摘要

In order to predict the remaining useful life (RUL) of lithium-ion batteries, a capacity degradation model may be developed using either simplified physical laws or machine learning-based methods. It is observed that even though degradation models based on simplified physical laws are easy to implement, they may result in large error in the application of failure prognostics. While data-driven prognostics models can provide more accurate degradation forecasting, they may require a large volume of training data and may invoke predictions inconsistent with physical laws. It is also very challenging for existing methods to predict the RUL at the early stages of battery life. In this paper, we propose a Bayesian physics-constrained neural network for battery RUL prediction by overcoming limitations of the current methods. In the proposed method, a neural differential operator is learned from the first 100 cycles of data. The neural differential operator is modeled with a Bayesian neural network architecture that separates the fixed history dependence from the time dependence to isolate epistemic uncertainty quantification. Using the battery dataset presented in the paper by Severson et al. as an example, we compare our proposed method with a simplified physics-based degradation forecasting model and two data-driven prognostics models. The results show that the proposed physics-constrained neural network can provide more accurate RUL estimation than the other methods with the same group of training data. Most importantly, the proposed method allows for RUL prediction at earlier stages of the battery life cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒心新儿完成签到,获得积分10
刚刚
xwf关注了科研通微信公众号
刚刚
清客完成签到 ,获得积分10
2秒前
小蘑菇应助Xcentimeter采纳,获得10
2秒前
专注人生发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
guijunmola完成签到,获得积分10
2秒前
3秒前
戌博完成签到,获得积分10
3秒前
3秒前
MchemG应助君君采纳,获得30
3秒前
天天快乐应助zhouchen采纳,获得10
3秒前
4秒前
123完成签到,获得积分10
4秒前
Leslie完成签到,获得积分10
4秒前
科研通AI5应助X暴富采纳,获得10
4秒前
麦麦完成签到,获得积分10
4秒前
4秒前
wager发布了新的文献求助10
5秒前
抵澳报了完成签到,获得积分10
6秒前
lxj完成签到,获得积分10
6秒前
6秒前
6秒前
刻刻完成签到,获得积分10
7秒前
7秒前
7秒前
仁爱海莲发布了新的文献求助10
7秒前
Leslie发布了新的文献求助10
8秒前
LL发布了新的文献求助10
8秒前
Yao完成签到,获得积分10
8秒前
鳗鱼无施发布了新的文献求助10
9秒前
lzg完成签到,获得积分20
10秒前
ding应助君君采纳,获得10
10秒前
Ava应助君君采纳,获得10
10秒前
赘婿应助君君采纳,获得30
10秒前
科研通AI6应助君君采纳,获得30
10秒前
科研通AI6应助君君采纳,获得30
10秒前
科研通AI6应助君君采纳,获得30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5010247
求助须知:如何正确求助?哪些是违规求助? 4252068
关于积分的说明 13248969
捐赠科研通 4054078
什么是DOI,文献DOI怎么找? 2217575
邀请新用户注册赠送积分活动 1227140
关于科研通互助平台的介绍 1149262