A Physics-Constrained Bayesian neural network for battery remaining useful life prediction

预言 人工神经网络 电池(电) 人工智能 贝叶斯概率 计算机科学 机器学习 工程类 数据挖掘 物理 量子力学 功率(物理)
作者
David Najera-Flores,Zhen Hu,Mayank Chadha,Michael D. Todd
出处
期刊:Applied Mathematical Modelling [Elsevier]
卷期号:122: 42-59 被引量:30
标识
DOI:10.1016/j.apm.2023.05.038
摘要

In order to predict the remaining useful life (RUL) of lithium-ion batteries, a capacity degradation model may be developed using either simplified physical laws or machine learning-based methods. It is observed that even though degradation models based on simplified physical laws are easy to implement, they may result in large error in the application of failure prognostics. While data-driven prognostics models can provide more accurate degradation forecasting, they may require a large volume of training data and may invoke predictions inconsistent with physical laws. It is also very challenging for existing methods to predict the RUL at the early stages of battery life. In this paper, we propose a Bayesian physics-constrained neural network for battery RUL prediction by overcoming limitations of the current methods. In the proposed method, a neural differential operator is learned from the first 100 cycles of data. The neural differential operator is modeled with a Bayesian neural network architecture that separates the fixed history dependence from the time dependence to isolate epistemic uncertainty quantification. Using the battery dataset presented in the paper by Severson et al. as an example, we compare our proposed method with a simplified physics-based degradation forecasting model and two data-driven prognostics models. The results show that the proposed physics-constrained neural network can provide more accurate RUL estimation than the other methods with the same group of training data. Most importantly, the proposed method allows for RUL prediction at earlier stages of the battery life cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liam完成签到,获得积分10
1秒前
能干外套完成签到,获得积分10
1秒前
含蓄饼干发布了新的文献求助10
1秒前
2秒前
2秒前
陈丽媛发布了新的文献求助10
2秒前
leo发布了新的文献求助10
2秒前
温柔惜海完成签到 ,获得积分10
3秒前
烟花应助魁梧的文轩采纳,获得10
3秒前
reze发布了新的文献求助20
4秒前
朴实凝雁发布了新的文献求助10
4秒前
4秒前
传奇3应助曲秋白采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
可靠海冬完成签到,获得积分20
6秒前
传奇3应助养叶子采纳,获得10
6秒前
6秒前
7秒前
LQQ完成签到,获得积分10
7秒前
传奇3应助浮沫采纳,获得10
7秒前
7秒前
8秒前
科研通AI6应助张志超采纳,获得10
8秒前
8秒前
温柔惜海关注了科研通微信公众号
9秒前
研友_VZG7GZ应助yanzi采纳,获得10
9秒前
9秒前
mm发布了新的文献求助10
9秒前
白福情完成签到,获得积分10
9秒前
俊俊发布了新的文献求助10
9秒前
9秒前
9秒前
欧巴江南style完成签到,获得积分10
11秒前
11秒前
希望天下0贩的0应助kk采纳,获得10
11秒前
东方雪瑶关注了科研通微信公众号
11秒前
肘子发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661387
求助须知:如何正确求助?哪些是违规求助? 4838678
关于积分的说明 15095847
捐赠科研通 4820153
什么是DOI,文献DOI怎么找? 2579773
邀请新用户注册赠送积分活动 1534034
关于科研通互助平台的介绍 1492769