MCP: Learning Composable Hierarchical Control with Multiplicative Compositional Policies

计算机科学 重新使用 灵活性(工程) 多样性(控制论) 人机交互 人工智能 控制(管理) 分布式计算 生态学 数学 生物 统计
作者
Xue Bin Peng,Michael Chang,Grace Zhang,Pieter Abbeel,Sergey Levine
出处
期刊:Cornell University - arXiv 被引量:55
标识
DOI:10.48550/arxiv.1905.09808
摘要

Humans are able to perform a myriad of sophisticated tasks by drawing upon skills acquired through prior experience. For autonomous agents to have this capability, they must be able to extract reusable skills from past experience that can be recombined in new ways for subsequent tasks. Furthermore, when controlling complex high-dimensional morphologies, such as humanoid bodies, tasks often require coordination of multiple skills simultaneously. Learning discrete primitives for every combination of skills quickly becomes prohibitive. Composable primitives that can be recombined to create a large variety of behaviors can be more suitable for modeling this combinatorial explosion. In this work, we propose multiplicative compositional policies (MCP), a method for learning reusable motor skills that can be composed to produce a range of complex behaviors. Our method factorizes an agent's skills into a collection of primitives, where multiple primitives can be activated simultaneously via multiplicative composition. This flexibility allows the primitives to be transferred and recombined to elicit new behaviors as necessary for novel tasks. We demonstrate that MCP is able to extract composable skills for highly complex simulated characters from pre-training tasks, such as motion imitation, and then reuse these skills to solve challenging continuous control tasks, such as dribbling a soccer ball to a goal, and picking up an object and transporting it to a target location.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽杨完成签到,获得积分10
刚刚
刚刚
八点半关注了科研通微信公众号
刚刚
满袖皆星河完成签到 ,获得积分10
1秒前
李健应助hzhang01采纳,获得10
1秒前
1秒前
赘婿应助柒八染采纳,获得10
2秒前
Akim应助负责雨安采纳,获得10
2秒前
2秒前
单排轮完成签到,获得积分20
3秒前
3秒前
欢喜蛋挞完成签到,获得积分10
3秒前
马璐璐发布了新的文献求助10
3秒前
酷波er应助MrW采纳,获得10
3秒前
靖靖雯发布了新的文献求助10
3秒前
苹果亦巧发布了新的文献求助30
3秒前
4秒前
687发布了新的文献求助10
4秒前
Broxiga应助lunky采纳,获得10
4秒前
葉芊羽发布了新的文献求助10
4秒前
梵墨完成签到,获得积分10
5秒前
上官若男应助张婷婷采纳,获得10
5秒前
5秒前
5秒前
Air云完成签到,获得积分10
5秒前
6秒前
体贴曹曹完成签到,获得积分20
7秒前
小雨点Logan完成签到,获得积分10
7秒前
海大Stephen完成签到 ,获得积分10
8秒前
大模型应助宋向荣采纳,获得10
8秒前
小龙虾完成签到,获得积分10
8秒前
9秒前
悦耳水之发布了新的文献求助10
9秒前
9秒前
领导范儿应助苹果亦巧采纳,获得10
9秒前
9秒前
orixero应助代沁采纳,获得10
10秒前
xiaoliu发布了新的文献求助10
10秒前
kiminonawa应助childe采纳,获得10
11秒前
绿狗玩偶发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717071
求助须知:如何正确求助?哪些是违规求助? 5243787
关于积分的说明 15280952
捐赠科研通 4867441
什么是DOI,文献DOI怎么找? 2613673
邀请新用户注册赠送积分活动 1563595
关于科研通互助平台的介绍 1521091