A modality‐collaborative convolution and transformer hybrid network for unpaired multi‐modal medical image segmentation with limited annotations

计算机科学 人工智能 情态动词 模态(人机交互) 分割 卷积(计算机科学) 医学影像学 图像分割 计算机视觉 人工神经网络 材料科学 高分子化学
作者
Hong Liu,Yuzhou Zhuang,Enmin Song,Xiangyang Xu,Guangzhi Ma,Coskun Cetinkaya,Chih‐Cheng Hung
出处
期刊:Medical Physics [Wiley]
卷期号:50 (9): 5460-5478 被引量:12
标识
DOI:10.1002/mp.16338
摘要

Abstract Background Multi‐modal learning is widely adopted to learn the latent complementary information between different modalities in multi‐modal medical image segmentation tasks. Nevertheless, the traditional multi‐modal learning methods require spatially well‐aligned and paired multi‐modal images for supervised training, which cannot leverage unpaired multi‐modal images with spatial misalignment and modality discrepancy. For training accurate multi‐modal segmentation networks using easily accessible and low‐cost unpaired multi‐modal images in clinical practice, unpaired multi‐modal learning has received comprehensive attention recently. Purpose Existing unpaired multi‐modal learning methods usually focus on the intensity distribution gap but ignore the scale variation problem between different modalities. Besides, within existing methods, shared convolutional kernels are frequently employed to capture common patterns in all modalities, but they are typically inefficient at learning global contextual information. On the other hand, existing methods highly rely on a large number of labeled unpaired multi‐modal scans for training, which ignores the practical scenario when labeled data is limited. To solve the above problems, we propose a modality‐collaborative convolution and transformer hybrid network (MCTHNet) using semi‐supervised learning for unpaired multi‐modal segmentation with limited annotations, which not only collaboratively learns modality‐specific and modality‐invariant representations, but also could automatically leverage extensive unlabeled scans for improving performance. Methods We make three main contributions to the proposed method. First, to alleviate the intensity distribution gap and scale variation problems across modalities, we develop a modality‐specific scale‐aware convolution (MSSC) module that can adaptively adjust the receptive field sizes and feature normalization parameters according to the input. Secondly, we propose a modality‐invariant vision transformer (MIViT) module as the shared bottleneck layer for all modalities, which implicitly incorporates convolution‐like local operations with the global processing of transformers for learning generalizable modality‐invariant representations. Third, we design a multi‐modal cross pseudo supervision (MCPS) method for semi‐supervised learning, which enforces the consistency between the pseudo segmentation maps generated by two perturbed networks to acquire abundant annotation information from unlabeled unpaired multi‐modal scans. Results Extensive experiments are performed on two unpaired CT and MR segmentation datasets, including a cardiac substructure dataset derived from the MMWHS‐2017 dataset and an abdominal multi‐organ dataset consisting of the BTCV and CHAOS datasets. Experiment results show that our proposed method significantly outperforms other existing state‐of‐the‐art methods under various labeling ratios, and achieves a comparable segmentation performance close to single‐modal methods with fully labeled data by only leveraging a small portion of labeled data. Specifically, when the labeling ratio is 25%, our proposed method achieves overall mean DSC values of 78.56% and 76.18% in cardiac and abdominal segmentation, respectively, which significantly improves the average DSC value of two tasks by 12.84% compared to single‐modal U‐Net models. Conclusions Our proposed method is beneficial for reducing the annotation burden of unpaired multi‐modal medical images in clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿蒙发布了新的文献求助10
刚刚
安鹏完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
zhu发布了新的文献求助10
2秒前
2秒前
明朗完成签到 ,获得积分0
3秒前
4秒前
祖f完成签到,获得积分10
5秒前
武林小鸟完成签到,获得积分10
5秒前
无极微光应助风中珩采纳,获得20
5秒前
Parsec完成签到 ,获得积分10
5秒前
坚强怀绿发布了新的文献求助10
6秒前
热情灵珊完成签到,获得积分10
7秒前
zzzzzdz完成签到,获得积分10
7秒前
9秒前
QW111完成签到,获得积分10
10秒前
HUYAOWEI发布了新的文献求助10
12秒前
12秒前
少一点西红柿完成签到 ,获得积分10
12秒前
十月天秤完成签到,获得积分10
13秒前
怕孤单的Hannah完成签到 ,获得积分10
14秒前
学术长颈鹿完成签到,获得积分10
15秒前
叙温雨发布了新的文献求助10
17秒前
疯狂的水杯完成签到,获得积分10
17秒前
丰富的复天完成签到,获得积分10
18秒前
科研通AI6应助zhz采纳,获得10
18秒前
Likz完成签到,获得积分0
18秒前
坚强怀绿完成签到,获得积分10
18秒前
大气的草莓完成签到,获得积分10
22秒前
MNing完成签到,获得积分20
23秒前
cyy1226完成签到,获得积分10
23秒前
25秒前
14完成签到,获得积分10
25秒前
安鹏发布了新的文献求助10
26秒前
绿兔子完成签到,获得积分10
26秒前
东方元语应助HUYAOWEI采纳,获得20
26秒前
诸葛烤鸭完成签到,获得积分10
26秒前
年华完成签到,获得积分10
26秒前
进步完成签到,获得积分10
27秒前
关复观完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635601
求助须知:如何正确求助?哪些是违规求助? 4738352
关于积分的说明 14991159
捐赠科研通 4793484
什么是DOI,文献DOI怎么找? 2560560
邀请新用户注册赠送积分活动 1520507
关于科研通互助平台的介绍 1480779