Predicting the Risk of Posttraumatic Osteoarthritis After Primary Anterior Cruciate Ligament Reconstruction: A Machine Learning Time-to-Event Analysis

医学 骨关节炎 事件(粒子物理) 前交叉韧带重建术 物理医学与康复 前交叉韧带 口腔正畸科 外科 计算机科学 量子力学 物理 病理 替代医学
作者
Yining Lu,Anna K. Reinholz,Sara E. Till,Sydney V. Kalina,Daniël B.F. Saris,Christopher L. Camp,Michael J. Stuart
出处
期刊:American Journal of Sports Medicine [SAGE]
卷期号:51 (7): 1673-1685 被引量:12
标识
DOI:10.1177/03635465231168139
摘要

Background: There is a significant long-term risk of posttraumatic osteoarthritis (PTOA) after anterior cruciate ligament reconstruction (ACLR). Elucidating the risk factors and successfully identifying at-risk patients is challenging. Purpose/Hypothesis: The purpose of this study was to produce machine learning survival models that can identify (1) patients at risk of symptomatic PTOA and (2) patients who are at risk of undergoing total knee arthroplasty (TKA) after ACLR. It was hypothesized that these models would outperform traditional Kaplan-Meier estimators. Study Design: Case-control study; Level of evidence, 3. Methods: A geographic database was used to identify patients undergoing ACLR between 1990 and 2016 with a minimum 7.5-year follow-up. Models were used to analyze various factors to predict the rate and time to (1) symptomatic osteoarthritis and (2) TKA using random survival forest (RSF) algorithms. Performance was measured using out-of-bag (OOB) c-statistic, calibration, and Brier score. The predictive performances of the RSF models were compared with Kaplan-Meier estimators. Model interpretability was enhanced utilizing global variable importance and partial dependence curves. Results: A total of 974 patients with ACLR and a minimum follow-up of 7.5 years were included; among these, 215 (22.1%) developed symptomatic osteoarthritis, and 25 (2.6%) progressed to TKA. The RSF algorithms achieved acceptable good to excellent predictive performance for symptomatic arthritis (OOB c-statistic, 0.75; Brier score, 0.128) and progression to TKA (OOB c-statistic, 0.89; Brier score, 0.026), respectively. Significant predictors of symptomatic PTOA included increased pain scores, older age, increased body mass index, increased time to ACLR, total number of arthroscopic surgeries before the diagnosis of arthritis, positive pivot-shift test after reconstruction, concomitant chondral injury, secondary meniscal tear, early (<250 days) or delayed (>500 days) return to sports or activity, and use of allograft. Significant predictors for TKA included older age, increased pain scores, total number of arthroscopic surgeries, high-demand activity/occupation, hypermobility, higher body mass index, systemic inflammatory disease, increased time to surgery, early (<250 days) or delayed (>500 days) return to sports or activity, and midsubstance tears. The Brier score over time revealed that RSF models outperformed traditional Kaplan-Meier estimators. Conclusion: Machine learning survival models were used to reliably identify patients at risk of developing symptomatic PTOA, and these models consistently outperformed traditional Kaplan-Meier estimators. Strong predictors for the development of PTOA after ACLR included increased pain scores at injury and postoperative visit, older age at injury, total number of arthroscopic procedures, positive postoperative pivot-shift test, and secondary meniscal tear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沈华炜完成签到,获得积分10
刚刚
1秒前
香蕉觅云应助魂断红颜采纳,获得10
1秒前
1秒前
2秒前
2秒前
tomato大王发布了新的文献求助10
3秒前
LL完成签到 ,获得积分10
3秒前
执着蓝完成签到,获得积分20
3秒前
科研通AI6应助whq531608采纳,获得10
3秒前
3秒前
LL完成签到 ,获得积分10
4秒前
罗大人发布了新的文献求助30
4秒前
4秒前
小蘑菇应助啦啦王采纳,获得10
5秒前
传奇3应助蛋炒饭采纳,获得10
5秒前
共享精神应助哈哈采纳,获得10
5秒前
5秒前
林妹妹完成签到 ,获得积分10
5秒前
Ava应助顺心白开水采纳,获得10
5秒前
爱壹帆完成签到,获得积分10
6秒前
高糕完成签到,获得积分10
7秒前
eric888应助执着蓝采纳,获得30
7秒前
搞怪白秋发布了新的文献求助10
7秒前
ff完成签到,获得积分20
8秒前
李健的小迷弟应助黄三金采纳,获得10
8秒前
gxj完成签到,获得积分10
8秒前
8秒前
liukanhai完成签到,获得积分10
8秒前
栀暖棠深完成签到,获得积分10
9秒前
10秒前
Nothing发布了新的文献求助10
10秒前
11秒前
12秒前
JerryAn发布了新的文献求助10
12秒前
愤怒的凤完成签到,获得积分10
12秒前
13秒前
13秒前
一心完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613711
求助须知:如何正确求助?哪些是违规求助? 4698841
关于积分的说明 14899179
捐赠科研通 4737144
什么是DOI,文献DOI怎么找? 2547125
邀请新用户注册赠送积分活动 1511132
关于科研通互助平台的介绍 1473605