Predicting the Risk of Posttraumatic Osteoarthritis After Primary Anterior Cruciate Ligament Reconstruction: A Machine Learning Time-to-Event Analysis

医学 骨关节炎 事件(粒子物理) 前交叉韧带重建术 物理医学与康复 前交叉韧带 口腔正畸科 外科 计算机科学 量子力学 物理 替代医学 病理
作者
Yining Lu,Anna K. Reinholz,Sara E. Till,Sydney V. Kalina,Daniël B.F. Saris,Christopher L. Camp,Michael J. Stuart
出处
期刊:American Journal of Sports Medicine [SAGE Publishing]
卷期号:51 (7): 1673-1685 被引量:10
标识
DOI:10.1177/03635465231168139
摘要

There is a significant long-term risk of posttraumatic osteoarthritis (PTOA) after anterior cruciate ligament reconstruction (ACLR). Elucidating the risk factors and successfully identifying at-risk patients is challenging.The purpose of this study was to produce machine learning survival models that can identify (1) patients at risk of symptomatic PTOA and (2) patients who are at risk of undergoing total knee arthroplasty (TKA) after ACLR. It was hypothesized that these models would outperform traditional Kaplan-Meier estimators.Case-control study; Level of evidence, 3.A geographic database was used to identify patients undergoing ACLR between 1990 and 2016 with a minimum 7.5-year follow-up. Models were used to analyze various factors to predict the rate and time to (1) symptomatic osteoarthritis and (2) TKA using random survival forest (RSF) algorithms. Performance was measured using out-of-bag (OOB) c-statistic, calibration, and Brier score. The predictive performances of the RSF models were compared with Kaplan-Meier estimators. Model interpretability was enhanced utilizing global variable importance and partial dependence curves.A total of 974 patients with ACLR and a minimum follow-up of 7.5 years were included; among these, 215 (22.1%) developed symptomatic osteoarthritis, and 25 (2.6%) progressed to TKA. The RSF algorithms achieved acceptable good to excellent predictive performance for symptomatic arthritis (OOB c-statistic, 0.75; Brier score, 0.128) and progression to TKA (OOB c-statistic, 0.89; Brier score, 0.026), respectively. Significant predictors of symptomatic PTOA included increased pain scores, older age, increased body mass index, increased time to ACLR, total number of arthroscopic surgeries before the diagnosis of arthritis, positive pivot-shift test after reconstruction, concomitant chondral injury, secondary meniscal tear, early (<250 days) or delayed (>500 days) return to sports or activity, and use of allograft. Significant predictors for TKA included older age, increased pain scores, total number of arthroscopic surgeries, high-demand activity/occupation, hypermobility, higher body mass index, systemic inflammatory disease, increased time to surgery, early (<250 days) or delayed (>500 days) return to sports or activity, and midsubstance tears. The Brier score over time revealed that RSF models outperformed traditional Kaplan-Meier estimators.Machine learning survival models were used to reliably identify patients at risk of developing symptomatic PTOA, and these models consistently outperformed traditional Kaplan-Meier estimators. Strong predictors for the development of PTOA after ACLR included increased pain scores at injury and postoperative visit, older age at injury, total number of arthroscopic procedures, positive postoperative pivot-shift test, and secondary meniscal tear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪的白云完成签到 ,获得积分10
刚刚
9527发布了新的文献求助10
1秒前
fei发布了新的文献求助10
2秒前
璟晔完成签到,获得积分10
2秒前
Zn0103完成签到 ,获得积分10
2秒前
Christina完成签到,获得积分10
3秒前
5秒前
豆豆欢欢乐完成签到 ,获得积分10
7秒前
zz完成签到 ,获得积分10
10秒前
fei完成签到,获得积分10
11秒前
yjf完成签到 ,获得积分10
11秒前
愤怒的寻芹完成签到 ,获得积分10
11秒前
ting完成签到,获得积分10
13秒前
皮皮虾完成签到,获得积分10
15秒前
愤怒的寻芹关注了科研通微信公众号
15秒前
water发布了新的文献求助20
15秒前
liang发布了新的文献求助10
15秒前
繁荣的代秋完成签到 ,获得积分10
15秒前
黑森林完成签到,获得积分10
17秒前
LL完成签到,获得积分20
17秒前
wjw发布了新的文献求助10
17秒前
鲤鱼奇异果完成签到,获得积分10
17秒前
leclerc完成签到,获得积分10
19秒前
21秒前
23秒前
富贵开花完成签到,获得积分10
24秒前
26秒前
务实完成签到 ,获得积分10
26秒前
李木头完成签到,获得积分10
26秒前
27秒前
小小发布了新的文献求助10
30秒前
水月中辉完成签到,获得积分10
31秒前
忧伤的慕梅完成签到 ,获得积分10
31秒前
李爱国应助weiwei采纳,获得30
31秒前
小葡萄完成签到 ,获得积分10
34秒前
Hello应助xu采纳,获得10
34秒前
YL完成签到 ,获得积分10
36秒前
小石头完成签到 ,获得积分10
36秒前
ccrr完成签到 ,获得积分10
37秒前
37秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801134
求助须知:如何正确求助?哪些是违规求助? 3346777
关于积分的说明 10330258
捐赠科研通 3063151
什么是DOI,文献DOI怎么找? 1681383
邀请新用户注册赠送积分活动 807540
科研通“疑难数据库(出版商)”最低求助积分说明 763728