Cross-Regional Seismic Event Discrimination via Convolutional Neural Networks: Exploring Fine-Tuning and Ensemble Averaging

一般化 卷积神经网络 事件(粒子物理) 计算机科学 集合预报 集成学习 学习迁移 人工智能 模式识别(心理学) 机器学习 数学 数学分析 物理 量子力学
作者
Valentin Kasburg,Jozef Müller,Tom Eulenfeld,Alexander Breuer,Nina Kukowski
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society]
卷期号:114 (2): 842-856
标识
DOI:10.1785/0120230198
摘要

ABSTRACT The gradual densification of seismic networks has facilitated the acquisition of large amounts of data. However, alongside natural tectonic earthquakes, seismic networks also record anthropogenic events such as quarry blasts or other induced events. Identifying and distinguishing these events from natural earthquakes requires experienced interpreters to ensure that seismological studies of natural phenomena are not compromised by anthropogenic events. Advanced artificial intelligence methods have already been deployed to tackle this problem. One of the applications includes Convolutional Neural Networks (CNN) to discriminate different kinds of events, such as natural earthquakes and quarry blasts. In this study, we investigate the effects of ensemble averaging and fine-tuning on seismic event discrimination accuracy to estimate the potential of these methods. We compare discrimination accuracy of two different CNN model architectures across three datasets. This was done with the best models from an ensemble of each model architecture, as well as with ensemble averaging and fine-tuning methods. Soft voting was used for the CNN ensemble predictions. For the transfer learning approach, the models were pretrained with data from two of the datasets (nontarget regions) and fine-tuned with data from the third one (target region). The results show that ensemble averaging and fine-tuning of CNN models leads to better generalization of the model predictions. For the region with the lowest numbers of one event type, the combination of ensemble averaging and fine-tuning led to an increase in discrimination accuracy of up to 4% at station level and up to 10% at event level. We also tested the impact of the amount of training data on the fine-tuning method, showing, that to create a global model, the selection of comprehensive training data is needed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
正直的博发布了新的文献求助10
1秒前
1秒前
Dayle发布了新的文献求助10
3秒前
复杂明辉完成签到,获得积分10
3秒前
hzy6688完成签到,获得积分10
3秒前
松花蛋完成签到,获得积分10
3秒前
慕青应助甜橙汁采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
9秒前
10秒前
独行侠杨进步完成签到,获得积分10
10秒前
追寻的续完成签到,获得积分10
10秒前
12秒前
CipherSage应助Eternity采纳,获得10
12秒前
13秒前
追寻的续发布了新的文献求助100
13秒前
充电宝应助潘潘采纳,获得10
13秒前
13秒前
leemonster发布了新的文献求助10
14秒前
vision发布了新的文献求助10
14秒前
平淡尔琴完成签到,获得积分10
15秒前
15秒前
阿鑫完成签到 ,获得积分10
16秒前
慕子默发布了新的文献求助10
16秒前
16秒前
18秒前
18秒前
烟花应助专注鹤采纳,获得10
18秒前
甜橙汁发布了新的文献求助10
19秒前
林林林发布了新的文献求助10
21秒前
不再方里发布了新的文献求助10
22秒前
22秒前
23秒前
24秒前
25秒前
哐哧哐哧薯完成签到 ,获得积分10
26秒前
zhu完成签到,获得积分10
27秒前
爆米花应助张文涛采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511539
求助须知:如何正确求助?哪些是违规求助? 4606129
关于积分的说明 14498184
捐赠科研通 4541408
什么是DOI,文献DOI怎么找? 2488503
邀请新用户注册赠送积分活动 1470552
关于科研通互助平台的介绍 1442910