Physics-informed neural networks for heat transfer prediction in two-phase flows

气泡 传热 计算流体力学 等温过程 机械 物理 职位(财务) 流体力学 相(物质) 传质 边界(拓扑) 热力学 数学 数学分析 量子力学 经济 财务
作者
Darioush Jalili,Seohee Jang,Mohammad Jadidi,Giovanni Giustini,Amir Keshmiri,Yasser Mahmoudi
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier BV]
卷期号:221: 125089-125089 被引量:29
标识
DOI:10.1016/j.ijheatmasstransfer.2023.125089
摘要

This paper presents data-driven simulations of two-phase fluid processes with heat transfer. A Physics-Informed Neural Network (PINN) was applied to capture the behaviour of phase interfaces in two-phase flows and model the hydrodynamics and heat transfer of flow configurations representative of established numerical test cases. The developed PINN approach was trained on simulation data derived from physically based Computational Fluid Dynamics (CFD) simulations with interface capturing. The present study considers fundamental problems, including tracking the rise of a single gas bubble in a denser fluid and exploring the heat transfer in the wake of a bubble rising close to a heated wall. Tracking of a rising bubble phase interface of fluids with disparate properties was performed, revealing a maximum error of only 5.2% at the interface edge and a maximum error of 2.8% at the position of the centre of mass. Inferred (hidden variable) flows are studied in addition to a purely extrapolative inverse isothermal bubble case. When no velocity data was supplied, velocity field predictions remained accurate. Rise of an inferred isothermal bubble with unseen fluid properties was found to produce a maximum mean-squared error of 0.28 and centre of mass error of 1.25%. For the case of the rising bubble with a hot wall, the maximum error in the temperature domain using specified boundary conditions was 6.8%, while the bubble position analysis reveals a maximum positional error of 3.6%. These results demonstrate that PINN is agnostic to geometry and fluid properties when studying the combined effects of convection and buoyancy on two-phase flows for the first time. This work serves as a starting point for PINN in multiphase cases involving heat transfer over a range of geometries. Eventually, PINN will be used in such cases to provide solutions for forward, inverse, and extrapolative cases. Each of which represent a dramatic saving in computational cost compared to traditional CFD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
666完成签到 ,获得积分10
2秒前
2秒前
6秒前
激昂的语琴完成签到,获得积分10
13秒前
15秒前
和谐的果汁完成签到 ,获得积分10
17秒前
20秒前
AnyYuan完成签到 ,获得积分10
20秒前
任无施完成签到 ,获得积分10
20秒前
桂花完成签到 ,获得积分10
21秒前
研友_ZGAeoL完成签到,获得积分10
25秒前
灰鸽舞完成签到 ,获得积分10
36秒前
溯溯完成签到 ,获得积分10
38秒前
39秒前
温馨完成签到 ,获得积分10
41秒前
诗蕊完成签到 ,获得积分10
43秒前
45秒前
不怕考试的赵无敌完成签到 ,获得积分10
46秒前
48秒前
xwl9955发布了新的文献求助10
50秒前
拿铁小笼包完成签到,获得积分10
51秒前
耍酷蝴蝶完成签到 ,获得积分10
58秒前
20240901完成签到,获得积分10
1分钟前
hb完成签到,获得积分10
1分钟前
龙王爱吃糖完成签到 ,获得积分10
1分钟前
Lea应助古炮采纳,获得50
1分钟前
北城完成签到 ,获得积分10
1分钟前
老牛完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
老牛发布了新的文献求助10
1分钟前
高高的巨人完成签到 ,获得积分10
1分钟前
璐璐完成签到 ,获得积分10
1分钟前
伶俐的语雪完成签到,获得积分10
1分钟前
1分钟前
wang完成签到,获得积分10
1分钟前
1分钟前
腼腆的梦蕊完成签到 ,获得积分10
1分钟前
qqqq完成签到,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788421
求助须知:如何正确求助?哪些是违规求助? 3333726
关于积分的说明 10263234
捐赠科研通 3049649
什么是DOI,文献DOI怎么找? 1673644
邀请新用户注册赠送积分活动 802120
科研通“疑难数据库(出版商)”最低求助积分说明 760511