Multi-feature output deep network ensemble learning for face recognition and verification

计算机科学 人工智能 面部识别系统 特征(语言学) 卷积神经网络 机器学习 深度学习 学习迁移 模式识别(心理学) 面子(社会学概念) 人工神经网络 维数(图论) 集成学习 社会科学 哲学 语言学 数学 社会学 纯数学
作者
Chaorong Li
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-3232669/v1
摘要

Abstract In facial recognition systems, the sample size of face data is often limited, making it difficult to improve recognition performance through transfer learning using pre-trained deep neural network models (DCNNs). Furthermore, in complex environments, the recognition performance of a single DCNN is greatly weakened. To address these issues, this paper proposes a multi-feature DCNN ensemble learning method based on machine learning for facial recognition and verification. First, the characterization ability of face details is enhanced by expanding the output feature dimension of the DCNN model. Then, machine learning methods with few or no parameters are used for secondary learning on small sample databases to improve recognition/verification performance.In this work, we utilized several mainstream network models such as ResNet50 and SENet to expand and integrate features. The experimental results show that our proposed method can improve the recognition/validation accuracy of existing DCNN models by up to 10%. Moreover, this method does not require training the network, has relatively low computational costs, and has a wide range of practical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
青山道友完成签到,获得积分10
1秒前
2秒前
qiqiying完成签到,获得积分10
3秒前
pluto应助庞初南采纳,获得10
3秒前
4秒前
4秒前
明矾发布了新的文献求助10
5秒前
葱葱不吃葱完成签到 ,获得积分10
6秒前
6秒前
徐徐应助yiling采纳,获得10
6秒前
6秒前
7秒前
大模型应助wo采纳,获得10
7秒前
7秒前
基金中中中完成签到,获得积分10
8秒前
8秒前
9秒前
鹤唳完成签到,获得积分10
9秒前
ju龙哥发布了新的文献求助10
9秒前
科研通AI5应助含蓄的雁山采纳,获得30
9秒前
酷波er应助12432采纳,获得10
9秒前
吱吱完成签到,获得积分10
10秒前
10秒前
deng完成签到,获得积分20
10秒前
科研通AI5应助Avvei采纳,获得10
10秒前
漂亮的不言完成签到 ,获得积分10
10秒前
你好啊完成签到,获得积分10
11秒前
11秒前
deng发布了新的文献求助10
13秒前
脑洞疼应助thinking采纳,获得10
13秒前
13秒前
吱吱发布了新的文献求助10
13秒前
15秒前
sg关闭了sg文献求助
15秒前
15秒前
yiling完成签到,获得积分20
17秒前
rain123发布了新的文献求助10
17秒前
刘睿涵完成签到,获得积分10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794234
求助须知:如何正确求助?哪些是违规求助? 3339125
关于积分的说明 10294117
捐赠科研通 3055695
什么是DOI,文献DOI怎么找? 1676766
邀请新用户注册赠送积分活动 804705
科研通“疑难数据库(出版商)”最低求助积分说明 762051