An unsupervised transfer learning approach for rolling bearing fault diagnosis based on dual pseudo-label screening

人工智能 计算机科学 断层(地质) 学习迁移 机器学习 熵(时间箭头) 理论(学习稳定性) 模式识别(心理学) 对偶(语法数字) 数据挖掘 量子力学 物理 文学类 地质学 艺术 地震学
作者
Chunran Huo,Weiyang Xu,Quan Jiang,Yehu Shen,Qixin Zhu,Qingkui Zhang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (4): 2288-2309 被引量:6
标识
DOI:10.1177/14759217231206579
摘要

Deep transfer learning is an effective method for unsupervised fault diagnosis of rolling bearings. In some works, the pseudo-label of target domain prediction is used to improve the ability of target domain prediction in transfer learning. However, its validity depends on the quality of pseudo-label generated by the network itself, which is easy to cause the misclassification of the samples. Aiming to this, a dual sample screening (DSS) method based on the information of predicted label changes is proposed in the article, and it is applied to the fault diagnosis of rolling bearings with variable working conditions. DSS combines pre-screening and real-time screening and uses the continuous output of prediction label change information in the training process to improve the network training. It owes to eliminating part of the target domain samples with prediction errors in the stage of network training with pseudo-label. The proposed method improves the stability of the pseudo-label involved in the training and alleviates the negative effects caused by the pseudo-label. The experimental results on Paderborn University dataset show that, compare with the deep transfer learning fault diagnosis method based on pseudo-label cross-entropy, the average diagnostic accuracy of the six transfer tasks using DSS is increased by 5.97%, which effectively improves the fault diagnosis accuracy of rolling bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助ECHO采纳,获得10
刚刚
meiyiniu发布了新的文献求助10
刚刚
阿囡湖完成签到,获得积分10
刚刚
啥也不是完成签到,获得积分10
刚刚
Siyu完成签到 ,获得积分10
刚刚
刚刚
1秒前
1秒前
烟花应助wan采纳,获得10
1秒前
1秒前
大可爱完成签到 ,获得积分10
2秒前
柒柒牧马完成签到,获得积分10
2秒前
十八冠六完成签到,获得积分20
2秒前
搜集达人应助璟晔采纳,获得10
3秒前
yu完成签到,获得积分10
3秒前
3秒前
科研应助hhppt采纳,获得20
3秒前
苍鹰完成签到,获得积分10
3秒前
4秒前
肆三一发布了新的文献求助10
4秒前
清脆臻发布了新的文献求助16
4秒前
顾矜应助忧郁的易绿采纳,获得30
4秒前
慕青应助蟹老板采纳,获得10
4秒前
爆米花应助maomao采纳,获得10
5秒前
陶醉晓凡完成签到,获得积分10
5秒前
枕安完成签到,获得积分10
5秒前
颜老大发布了新的文献求助10
5秒前
涛哥完成签到,获得积分10
5秒前
DDAIDN完成签到,获得积分10
5秒前
6秒前
FashionBoy应助小懒猪采纳,获得10
6秒前
6秒前
yuuka完成签到,获得积分10
6秒前
6秒前
7秒前
lili完成签到,获得积分10
8秒前
张朝欣完成签到,获得积分10
8秒前
8秒前
Jasper应助果冻采纳,获得10
8秒前
搜集达人应助周震洋采纳,获得10
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340559
求助须知:如何正确求助?哪些是违规求助? 4476999
关于积分的说明 13933590
捐赠科研通 4372846
什么是DOI,文献DOI怎么找? 2402602
邀请新用户注册赠送积分活动 1395511
关于科研通互助平台的介绍 1367572