Magnetization reversals in core–shell sphere clusters: finite-element micromagnetic simulation and machine learning analysis

矫顽力 磁铁 成核 消磁场 凝聚态物理 磁化 材料科学 人工智能 算法 计算机科学 统计物理学 机器学习 物理 磁场 热力学 量子力学
作者
Hyeon-Kyu Park,Sang‐Koog Kim
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1)
标识
DOI:10.1038/s41598-023-42498-z
摘要

Recently developed permanent magnets, featuring specially engineered microstructures of inhomogeneous magnetic phases, are being considered as cost-effective alternatives to homogeneous single-main-phase hard magnets composed of Nd2Fe14B, without compromising performance. In this study, we conducted a comprehensive examination of a core-shell sphere cluster model of Ce-substituted inhomogeneous Nd2-δCeδFe14B phases versus homogeneous magnetic phases, utilizing finite-element micromagnetic simulation and machine learning methods. This involved a meticulous, sphere-by-sphere analysis of individual demagnetization curves calculated from the cluster model. The grain-by-grain analyses unveiled that these individual demagnetization curves can elucidate the overall magnetization reversal in terms of the nucleation and coercive fields for each sphere. Furthermore, it was observed that Nd-rich spheres exhibited much broader ranges of nucleation and coercive field distributions, while Nd-lean spheres showed relatively narrower ranges. To identify the key parameter responsible for the notable differences in the nucleation fields, we constructed a machine learning regression model. The model utilized numerous hyperparameter sets, optimized through the very fast simulated annealing algorithm, to ensure reliable training. Using the kernel SHapley Additive eXplanation (SHAP) technique, we inferred that stray fields among the 11 parameters were closely related to coercivity. We further substantiated the machine learning models' inference by establishing an analytical model based on the eigenvalue problem in classical micromagnetic theory. Our grain-by-grain interpretation can guide the optimal design of granular hard magnets from Nd2Fe14B and other abundant rare earth transition elements, focusing on extraordinary performance through the careful adjustment of microstructures and elemental compositions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助白桃味的夏采纳,获得10
刚刚
君莫笑发布了新的文献求助10
刚刚
1秒前
牵墨完成签到,获得积分10
2秒前
Ava应助简单的呆呆采纳,获得10
2秒前
3秒前
ccc2发布了新的文献求助10
3秒前
糖糖糖完成签到,获得积分10
3秒前
fan051500发布了新的文献求助30
4秒前
4秒前
4秒前
4秒前
封25完成签到,获得积分10
5秒前
Bob完成签到,获得积分10
5秒前
Up完成签到,获得积分10
6秒前
俊逸沛菡发布了新的文献求助10
6秒前
爸爸完成签到,获得积分10
6秒前
6秒前
森林木发布了新的文献求助10
7秒前
zui完成签到,获得积分10
7秒前
7秒前
唠叨的胡萝卜完成签到,获得积分10
7秒前
桃桃完成签到,获得积分10
8秒前
8秒前
上官若男应助renyi97采纳,获得10
9秒前
mzry完成签到,获得积分20
9秒前
zhaolei0519发布了新的文献求助10
9秒前
健康的代珊完成签到,获得积分10
10秒前
10秒前
10秒前
王思鲁完成签到,获得积分10
10秒前
大个应助加百莉采纳,获得10
11秒前
谢谢完成签到,获得积分10
11秒前
炸药发布了新的文献求助10
12秒前
12秒前
Dale发布了新的文献求助10
12秒前
鱼鱼鱼KYSL完成签到 ,获得积分10
13秒前
ztt发布了新的文献求助10
13秒前
14秒前
14秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
The Psychology of Advertising (5th edition) 550
2023 ASHRAE Handbook HVAC Applications (SI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3872366
求助须知:如何正确求助?哪些是违规求助? 3414673
关于积分的说明 10690214
捐赠科研通 3138982
什么是DOI,文献DOI怎么找? 1731831
邀请新用户注册赠送积分活动 835024
科研通“疑难数据库(出版商)”最低求助积分说明 781656