Four failure modes in silicon heterojunction glass-backsheet modules

母线 晶体硅 失效模式及影响分析 复合材料 材料科学 光电子学 电气工程 工程类
作者
Chandany Sen,Haoran Wang,Xinyuan Wu,Muhammad Umair Khan,Catherine Chan,Malcolm Abbott,Bram Hoex
出处
期刊:Solar Energy Materials and Solar Cells [Elsevier BV]
卷期号:257: 112358-112358 被引量:8
标识
DOI:10.1016/j.solmat.2023.112358
摘要

Silicon heterojunction technology (HJT) is expected to gain a significant market share in the near future. For HJT to deliver a low levelized cost of electricity (LCOE), it needs to have a high initial efficiency and degrade less than 0.5% relative per year. This work investigates damp heat-induced failure modes in silicon HJT glass-backsheet modules. Four unique failure modes are identified after damp heat (DH) testing: point failure (Type-1); failure around the interconnected regions of the busbars and ribbon wires (Type-2); failure between the busbars (Type-3); and failure at/on the interconnected regions of busbars and ribbon wires (Type-4). The Type-1 failure mode is likely caused by a chemical reaction between surface contaminants (introduced to the cells during handling or characterization before encapsulation) and moisture that increase charge carrier recombination and lead to a loss in maximum power (Pmax) of up to 40%rel in this study. Type-2 and Type-3 failure modes cause Pmax losses of ∼5%rel and 50%rel, respectively, in this study and can appear due to exposure to soldering flux used for connecting the ribbon wires and busbars. Finally, the Type-4 failure mode causes a Pmax loss of ∼16%rel in this study after the DH test. The evidence suggests that this failure mode is likely due to the interaction of acetic acid, generated from a reaction between the encapsulation material and moisture, ribbon wires, and silver paste (busbars), resulting in recombination loss. We believe these failure modes must be well understood and mitigated at preferably the solar cell level to ensure that HJT can meet its LCOE potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助专一的书桃采纳,获得10
刚刚
隔壁老六发布了新的文献求助10
1秒前
2秒前
3秒前
达达发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
Byron完成签到,获得积分10
6秒前
dowhenin发布了新的文献求助10
7秒前
沉默冷雪发布了新的文献求助10
7秒前
达达完成签到,获得积分10
9秒前
小熊饼干发布了新的文献求助10
10秒前
SYLH应助文献求助采纳,获得10
12秒前
沉默冷雪完成签到,获得积分10
13秒前
Kate发布了新的文献求助30
15秒前
15秒前
16秒前
丫丫发布了新的文献求助30
16秒前
huyulele完成签到,获得积分10
16秒前
Lucas应助沙洲采纳,获得10
18秒前
萝卜干完成签到,获得积分20
19秒前
Jasper应助WHL采纳,获得10
19秒前
23秒前
27秒前
29秒前
小熊饼干完成签到,获得积分20
29秒前
29秒前
30秒前
桃宝儿完成签到,获得积分10
32秒前
Singularity应助qimiao66668采纳,获得10
32秒前
Rsquo发布了新的文献求助10
32秒前
科学家发布了新的文献求助30
33秒前
luckydog发布了新的文献求助10
33秒前
Sunnig盈发布了新的文献求助10
34秒前
烟花应助丫丫采纳,获得10
34秒前
34秒前
35秒前
平常的伊发布了新的文献求助30
36秒前
38秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826623
求助须知:如何正确求助?哪些是违规求助? 3368959
关于积分的说明 10453002
捐赠科研通 3088482
什么是DOI,文献DOI怎么找? 1699152
邀请新用户注册赠送积分活动 817281
科研通“疑难数据库(出版商)”最低求助积分说明 770136