Four failure modes in silicon heterojunction glass-backsheet modules

母线 晶体硅 失效模式及影响分析 复合材料 材料科学 光电子学 电气工程 工程类
作者
Chandany Sen,Haoran Wang,Xinyuan Wu,Muhammad Umair Khan,Catherine Chan,Malcolm Abbott,Bram Hoex
出处
期刊:Solar Energy Materials and Solar Cells [Elsevier]
卷期号:257: 112358-112358 被引量:4
标识
DOI:10.1016/j.solmat.2023.112358
摘要

Silicon heterojunction technology (HJT) is expected to gain a significant market share in the near future. For HJT to deliver a low levelized cost of electricity (LCOE), it needs to have a high initial efficiency and degrade less than 0.5% relative per year. This work investigates damp heat-induced failure modes in silicon HJT glass-backsheet modules. Four unique failure modes are identified after damp heat (DH) testing: point failure (Type-1); failure around the interconnected regions of the busbars and ribbon wires (Type-2); failure between the busbars (Type-3); and failure at/on the interconnected regions of busbars and ribbon wires (Type-4). The Type-1 failure mode is likely caused by a chemical reaction between surface contaminants (introduced to the cells during handling or characterization before encapsulation) and moisture that increase charge carrier recombination and lead to a loss in maximum power (Pmax) of up to 40%rel in this study. Type-2 and Type-3 failure modes cause Pmax losses of ∼5%rel and 50%rel, respectively, in this study and can appear due to exposure to soldering flux used for connecting the ribbon wires and busbars. Finally, the Type-4 failure mode causes a Pmax loss of ∼16%rel in this study after the DH test. The evidence suggests that this failure mode is likely due to the interaction of acetic acid, generated from a reaction between the encapsulation material and moisture, ribbon wires, and silver paste (busbars), resulting in recombination loss. We believe these failure modes must be well understood and mitigated at preferably the solar cell level to ensure that HJT can meet its LCOE potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助程风破浪采纳,获得10
刚刚
刚刚
2秒前
kiki134发布了新的文献求助10
4秒前
凉月发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
听听看发布了新的文献求助10
8秒前
5yy完成签到 ,获得积分20
8秒前
qian发布了新的文献求助10
10秒前
13秒前
15秒前
cctv18应助qian采纳,获得30
17秒前
19秒前
20秒前
吾可完成签到 ,获得积分10
20秒前
21秒前
boluo20046给boluo20046的求助进行了留言
21秒前
22秒前
22秒前
25秒前
洛芷完成签到,获得积分10
25秒前
珊珊来迟发布了新的文献求助10
25秒前
研友_ZGAWYL发布了新的文献求助10
26秒前
26秒前
29秒前
丹霞应助冷静蜜蜂采纳,获得10
29秒前
29秒前
30秒前
冷傲的冰美式完成签到,获得积分20
35秒前
务实白开水完成签到 ,获得积分10
35秒前
39秒前
珊珊来迟完成签到,获得积分10
39秒前
39秒前
40秒前
丹霞应助洋洋采纳,获得10
42秒前
44秒前
44秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2471765
求助须知:如何正确求助?哪些是违规求助? 2138178
关于积分的说明 5448807
捐赠科研通 1862106
什么是DOI,文献DOI怎么找? 926057
版权声明 562747
科研通“疑难数据库(出版商)”最低求助积分说明 495326