已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fusion of satellite and street view data for urban traffic accident hotspot identification

计算机科学 卫星图像 卷积神经网络 深度学习 人工智能 特征(语言学) 地理 数据挖掘 遥感 语言学 哲学
作者
Wentong Guo,Xu Cheng,Sheng Jin
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:130: 103853-103853 被引量:2
标识
DOI:10.1016/j.jag.2024.103853
摘要

As the number of vehicles and the volume of traffic swell in urban centers, cities have experienced a concomitant increase in traffic accidents. Proactively identifying accident-prone hotspots in urban environments holds the promise of preventing traffic mishaps, thereby curtailing the incidence of accidents and reducing property damage. This research introduces the Two-Branch Contextual Feature-Guided Converged Network (TCFGC-Net) utilizing multimodal satellite and street view data. Designed to extract global structural features from satellite imagery and dynamic continuous features from street view imagery, the model aims to improve the accuracy of detecting urban accident hotspots. For the satellite imagery branch, we propose the Contextual Feature Coupled Convolutional Neural Network (Trans-CFCCNN) designed to extract global spatial features and discern feature correlations across adjacent regions. For the street view imagery branch, we develop the Sequential Feature Recurrent Attention Network (SFRAN) to assimilate and integrate dynamic scene features captured from successive street view images. We designed the Multi-Branch Feature Adaptive Fusion Structure (MBFAF) to aggregate different branch features for accurate identification of accident hotspots. Experimental results show that the model performs well, with an overall accuracy of 93.7 %. Ablation studies confirm that relative to standalone street view and satellite branch analyses, implementing multimodal fusion enhances the model's accuracy by 12.05 % and 17.86 %, respectively. The innovative fusion structure proposed herein garners a 4.22 % increase in model accuracy, outpacing conventional feature concatenation techniques. Furthermore, the model outperforms existing deep learning models in terms of overall efficacy. Additionally, to showcase the efficacy of the proposed model structure, we utilize Class Activation Maps (CAM) to provide visual interpretability for the model. These results suggest that the dual-branch fusion model effectively decreases false alarm occurrences and directs the model's focus toward regions more pertinent to accident hotspots. Finally, the code and model used for identifying hotspots of urban traffic accidents in this study are available for access: https://github.com/gwt-ZJU/TCFGC-Net.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HybirdCell完成签到,获得积分10
2秒前
shizx发布了新的文献求助10
4秒前
社会主义接班人完成签到 ,获得积分10
6秒前
8秒前
iNk应助天真的铭采纳,获得10
10秒前
佩琦琦发布了新的文献求助10
10秒前
AQI发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
13秒前
16秒前
知性的笑柳完成签到,获得积分10
16秒前
20秒前
上官若男应助科研通管家采纳,获得10
21秒前
无花果应助科研通管家采纳,获得10
21秒前
小二郎应助科研通管家采纳,获得10
21秒前
Lucas应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得10
22秒前
科目三应助科研通管家采纳,获得10
22秒前
22秒前
上官若男应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
华仔应助科研通管家采纳,获得10
22秒前
高贵熊猫应助科研通管家采纳,获得20
22秒前
英姑应助科研通管家采纳,获得10
22秒前
岩崖应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
22秒前
Sober完成签到,获得积分10
24秒前
段段发布了新的文献求助10
25秒前
开朗亦绿发布了新的文献求助10
26秒前
香蕉友绿完成签到,获得积分20
26秒前
dd发布了新的文献求助10
27秒前
Chipseagull完成签到,获得积分10
28秒前
饼饼完成签到 ,获得积分10
34秒前
36秒前
与可发布了新的文献求助10
43秒前
wsh完成签到 ,获得积分10
43秒前
43秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 666
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4255049
求助须知:如何正确求助?哪些是违规求助? 3787795
关于积分的说明 11887709
捐赠科研通 3437966
什么是DOI,文献DOI怎么找? 1886753
邀请新用户注册赠送积分活动 937845
科研通“疑难数据库(出版商)”最低求助积分说明 843574