SecureCoder: A Framework for Mitigating Vulnerabilities in Automated Code Generation Using Large Language Models

计算机科学 程序设计语言 编码(集合论) 代码生成 软件工程 计算机安全 钥匙(锁) 集合(抽象数据类型)
作者
R. Y. Zhu
标识
DOI:10.54254/2755-2721/2025.20425
摘要

In recent years, the proliferation of code generation models based on large language models such as GitHub Copilot and ChatGPT allows automated source code generation to meet the needs of developers and helps increase coding efficiency. However, a recent study revealed security concerns in generated code, leading the code to be vulnerable to attacks. My research introduces a framework aimed at mitigating the risk of code generation models generating vulnerable code specific to data leakage issues. The ranker is developed to use VUDENC, a deep learning model for vulnerability detection, along with CodeQL and Bandit, two Python code analyzers, to evaluate and rank generated code based on security metrics. By generating multiple code candidates and utilizing the ranker to select the most secure option, it ensures the generation of more secure code. The framework is evaluated on an aggregated SecurityEval and LLMSecEval dataset on relevant scenarios, which shows the framework has newfound advantages compared to the gpt3.5-turbo model. With its proven effectiveness, the framework could be expanding its applicability beyond data leakage issues, adapting to mitigate a comprehensive range of vulnerabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yucj发布了新的文献求助10
1秒前
2秒前
默默发布了新的文献求助10
2秒前
ywty发布了新的文献求助10
3秒前
4秒前
5秒前
minger987完成签到,获得积分10
6秒前
YungCHien发布了新的文献求助10
6秒前
汉堡包应助Asheno采纳,获得10
7秒前
hhhhh发布了新的文献求助10
7秒前
在水一方应助yucj采纳,获得10
8秒前
Ruyii完成签到,获得积分10
8秒前
乐生发布了新的文献求助10
9秒前
复蓝发布了新的文献求助10
9秒前
9秒前
12秒前
YungCHien完成签到,获得积分10
14秒前
RichieXU完成签到,获得积分10
14秒前
Hello应助阿谭采纳,获得10
14秒前
苗浩阳完成签到,获得积分10
15秒前
Jane发布了新的文献求助10
16秒前
16秒前
16秒前
科目三应助饱满的问丝采纳,获得10
17秒前
yu完成签到,获得积分10
17秒前
17秒前
蕾蕾完成签到,获得积分10
19秒前
上官若男应助昏迷树袋熊采纳,获得10
19秒前
Akim应助江夏采纳,获得10
20秒前
Joy完成签到,获得积分10
20秒前
JamesPei应助科研通管家采纳,获得10
21秒前
所所应助科研通管家采纳,获得10
21秒前
充电宝应助科研通管家采纳,获得10
22秒前
eric888应助科研通管家采纳,获得30
22秒前
ding应助科研通管家采纳,获得30
22秒前
嘻嘻哈哈应助hhhh采纳,获得10
22秒前
wxyshare应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
所所应助科研通管家采纳,获得10
22秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5381743
求助须知:如何正确求助?哪些是违规求助? 4505001
关于积分的说明 14020181
捐赠科研通 4414324
什么是DOI,文献DOI怎么找? 2424823
邀请新用户注册赠送积分活动 1417753
关于科研通互助平台的介绍 1395592