Integrative metabolic and cellular organelle engineering for improving biosynthesis of flavonoid compounds in saccharomyces cerevisiae

代谢工程 柚皮素 类黄酮 生物化学 酿酒酵母 化学 葡萄酒 酵母 生物合成 花青素 食品科学 抗氧化剂
作者
Chao Wang,Wang Ma,Luwei Xu,Zhiyun Wei,Ke Tang,Jingwen Zhou,Jian Chen
出处
期刊:Food bioscience [Elsevier BV]
卷期号:60: 103996-103996 被引量:5
标识
DOI:10.1016/j.fbio.2024.103996
摘要

Flavonoids, including dihydroflavonols and anthocyanins, are phenolic compounds with significant biological activity, playing a crucial role in the sensory characteristics and health benefits of wine. In this study, we selected the naringenin-producing strain HB52 (Saccharomyces cerevisiae) as the starting strain and introduced synthetic pathways for dihydroflavonols and anthocyanins, achieving de novo synthesis of various flavonoid compounds. To further optimize flavonoid production, we employed several strategies, including overexpressing 5-enolpyruvylshikimate 3-phosphate synthase to enhance metabolic flux, integrating NADPH regeneration genes, and using citric acid/isocitric acid transporter genes to increase the levels of cofactors. Additionally, organelle engineering was utilized to strengthen the β-oxidation pathway, thereby elevating the levels of precursors such as acetyl-coenzyme A (CoA) and malonyl-CoA. Engineered strains significantly improved their ability to synthesize various flavonoids directly from glucose. In the final engineered strains, the production levels of NAR, DHQ, and DHM in the dihydroflavonol-engineered strains reached 379.2 mg/L, 231.3 mg/L, and 284.8 mg/L, respectively. The anthocyanin-engineered strains achieved the highest yield of anthocyanin synthesized from glucose in S. cerevisiae, reaching 45.7 mg/L (33.4 mg/L for C3G and 12.3 mg/L for D3G). This study highlights the potential of metabolic and organelle engineering in S. cerevisiae to increase flavonoid production, offering new prospects for enhancing sensory quality and health benefits in the wine industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Monet发布了新的文献求助10
2秒前
奕二叁完成签到 ,获得积分10
4秒前
咩咩完成签到,获得积分10
5秒前
5秒前
5秒前
咩咩发布了新的文献求助10
7秒前
酸奶完成签到,获得积分10
7秒前
Dr空瓶氧气完成签到,获得积分10
9秒前
10秒前
10秒前
别让我误会完成签到 ,获得积分10
11秒前
qifunongsuo1213完成签到 ,获得积分10
12秒前
14秒前
圈圈完成签到,获得积分10
14秒前
sigla完成签到 ,获得积分10
14秒前
17秒前
19秒前
19秒前
19秒前
21秒前
21秒前
22秒前
雄i完成签到,获得积分10
22秒前
健忘的网络完成签到,获得积分10
23秒前
fafafa完成签到,获得积分10
24秒前
Leo发布了新的文献求助10
25秒前
25秒前
26秒前
lovt123发布了新的文献求助10
26秒前
迷人的Jack发布了新的文献求助10
27秒前
可爱的函函应助LU采纳,获得10
27秒前
mouse发布了新的文献求助10
27秒前
28秒前
29秒前
艳子发布了新的文献求助10
31秒前
31秒前
Jackcaosky发布了新的文献求助10
32秒前
小单完成签到 ,获得积分10
33秒前
怡然铃铛发布了新的文献求助10
33秒前
Z1X2J3Y4完成签到,获得积分0
33秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Wh-exclamatives, Imperatives and Wh-questions 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827058
求助须知:如何正确求助?哪些是违规求助? 3369299
关于积分的说明 10455578
捐赠科研通 3088953
什么是DOI,文献DOI怎么找? 1699543
邀请新用户注册赠送积分活动 817382
科研通“疑难数据库(出版商)”最低求助积分说明 770208