Integrative metabolic and cellular organelle engineering for improving biosynthesis of flavonoid compounds in saccharomyces cerevisiae

代谢工程 柚皮素 类黄酮 生物化学 酿酒酵母 化学 葡萄酒 酵母 生物合成 花青素 食品科学 抗氧化剂
作者
Chao Wang,Wang Ma,Luwei Xu,Zhiyun Wei,Ke Tang,Jingwen Zhou,Jian Chen
出处
期刊:Food bioscience [Elsevier]
卷期号:60: 103996-103996 被引量:9
标识
DOI:10.1016/j.fbio.2024.103996
摘要

Flavonoids, including dihydroflavonols and anthocyanins, are phenolic compounds with significant biological activity, playing a crucial role in the sensory characteristics and health benefits of wine. In this study, we selected the naringenin-producing strain HB52 (Saccharomyces cerevisiae) as the starting strain and introduced synthetic pathways for dihydroflavonols and anthocyanins, achieving de novo synthesis of various flavonoid compounds. To further optimize flavonoid production, we employed several strategies, including overexpressing 5-enolpyruvylshikimate 3-phosphate synthase to enhance metabolic flux, integrating NADPH regeneration genes, and using citric acid/isocitric acid transporter genes to increase the levels of cofactors. Additionally, organelle engineering was utilized to strengthen the β-oxidation pathway, thereby elevating the levels of precursors such as acetyl-coenzyme A (CoA) and malonyl-CoA. Engineered strains significantly improved their ability to synthesize various flavonoids directly from glucose. In the final engineered strains, the production levels of NAR, DHQ, and DHM in the dihydroflavonol-engineered strains reached 379.2 mg/L, 231.3 mg/L, and 284.8 mg/L, respectively. The anthocyanin-engineered strains achieved the highest yield of anthocyanin synthesized from glucose in S. cerevisiae, reaching 45.7 mg/L (33.4 mg/L for C3G and 12.3 mg/L for D3G). This study highlights the potential of metabolic and organelle engineering in S. cerevisiae to increase flavonoid production, offering new prospects for enhancing sensory quality and health benefits in the wine industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jzq完成签到,获得积分20
刚刚
所谓发布了新的文献求助10
刚刚
qiangxu完成签到,获得积分10
刚刚
李楠完成签到 ,获得积分10
刚刚
刚刚
劉浏琉完成签到,获得积分10
1秒前
MeiyanZou完成签到,获得积分10
1秒前
1秒前
田様应助海鸟采纳,获得10
2秒前
牛马发布了新的文献求助10
2秒前
情怀应助xx采纳,获得10
2秒前
3秒前
3秒前
敏感老鼠完成签到,获得积分10
4秒前
coco完成签到 ,获得积分10
4秒前
mendicant完成签到,获得积分10
4秒前
阿嘎普莱特完成签到,获得积分0
4秒前
linxunxiazhi完成签到,获得积分10
5秒前
Ava应助哈哈哈哈哈采纳,获得10
5秒前
hu完成签到,获得积分20
5秒前
5秒前
阳光的衫完成签到,获得积分10
5秒前
飞飞发布了新的文献求助30
6秒前
小蘑菇应助浅忆晨曦采纳,获得10
6秒前
叶暖发布了新的文献求助10
6秒前
7秒前
默默杨完成签到,获得积分10
7秒前
外向的夏云关注了科研通微信公众号
7秒前
7秒前
8秒前
学术小白完成签到,获得积分10
8秒前
8秒前
Zhu完成签到,获得积分20
9秒前
9秒前
Allen完成签到,获得积分20
9秒前
科研通AI6应助业伟采纳,获得10
10秒前
10秒前
Sunn发布了新的文献求助20
10秒前
寻道图强应助眼睛大花生采纳,获得30
10秒前
凉凉盛夏发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427755
求助须知:如何正确求助?哪些是违规求助? 4541634
关于积分的说明 14177771
捐赠科研通 4459194
什么是DOI,文献DOI怎么找? 2445264
邀请新用户注册赠送积分活动 1436456
关于科研通互助平台的介绍 1413797