Pipeline Leak Detection System for a Smart City: Leveraging Acoustic Emission Sensing and Sequential Deep Learning

检漏 管道(软件) 声发射 计算机科学 泄漏 环境科学 深度学习 实时计算 声学 人工智能 操作系统 环境工程 物理
作者
N. Ullah,Muhammad Siddique,Saif Ullah,Zahoor Ahmad,Jong-Myon Kim
出处
期刊:Smart cities [Multidisciplinary Digital Publishing Institute]
卷期号:7 (4): 2318-2338 被引量:12
标识
DOI:10.3390/smartcities7040091
摘要

This study explores a novel approach utilizing acoustic emission (AE) signaling technology for pipeline leakage detection and analysis. Pipeline leaks are a significant concern in the liquids and gases industries, prompting the development of innovative detection methods. Unlike conventional methods, which often require contact and visual inspection with the pipeline surface, the proposed time-series-based deep learning approach offers real-time detection with higher safety and efficiency. In this study, we propose an automatic detection system of pipeline leakage for efficient transportation of liquid (water) and gas across the city, considering the smart city approach. We propose an AE-based framework combined with time-series deep learning algorithms to detect pipeline leaks through time-series features. The time-series AE signal detection module is designed to capture subtle changes in the AE signal state caused by leaks. Sequential deep learning models, including long short-term memory (LSTM), bi-directional LSTM (Bi-LSTM), and gated recurrent units (GRUs), are used to classify the AE response into normal and leakage detection from minor seepage, moderate leakage, and major ruptures in the pipeline. Three AE sensors are installed at different configurations on a pipeline, and data are acquired at 1 MHz sample/sec, which is decimated to 4K sample/second for efficiently utilizing the memory constraints of a remote system. The performance of these models is evaluated using metrics, namely accuracy, precision, recall, F1 score, and convergence, demonstrating classification accuracies of up to 99.78%. An accuracy comparison shows that BiLSTM performed better mostly with all hyperparameter settings. This research contributes to the advancement of pipeline leakage detection technology, offering improved accuracy and reliability in identifying and addressing pipeline integrity issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好好好完成签到 ,获得积分10
1秒前
2秒前
老实的栾发布了新的文献求助10
4秒前
54zxy完成签到,获得积分10
4秒前
yaosichao完成签到,获得积分10
5秒前
迅速的幻雪完成签到 ,获得积分10
7秒前
仅此而已完成签到,获得积分10
7秒前
7秒前
7秒前
9秒前
嘴角上扬完成签到 ,获得积分10
11秒前
13秒前
听蝉完成签到,获得积分10
13秒前
小马甲应助无奈的如彤采纳,获得10
14秒前
罗龙生完成签到,获得积分10
14秒前
zzz发布了新的文献求助10
15秒前
feier发布了新的文献求助10
15秒前
EasyNan应助Yucsh书慧123采纳,获得10
16秒前
快乐的凌柏完成签到,获得积分10
16秒前
叡叡完成签到,获得积分10
16秒前
17秒前
西鱼发布了新的文献求助10
18秒前
18秒前
嗯哼完成签到 ,获得积分10
18秒前
20秒前
Hello应助大小多少采纳,获得10
20秒前
21秒前
zhanghe发布了新的文献求助20
22秒前
22秒前
无奈的如彤完成签到,获得积分20
23秒前
李健的小迷弟应助dyh0521采纳,获得10
25秒前
轻松妙柏发布了新的文献求助10
26秒前
西鱼完成签到,获得积分10
28秒前
英俊的铭应助yc采纳,获得10
29秒前
zhanghe完成签到,获得积分20
30秒前
子凯发布了新的文献求助10
31秒前
华仔应助cc采纳,获得10
31秒前
36秒前
曹国庆完成签到 ,获得积分10
36秒前
36秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848763
求助须知:如何正确求助?哪些是违规求助? 3391487
关于积分的说明 10568161
捐赠科研通 3112182
什么是DOI,文献DOI怎么找? 1715103
邀请新用户注册赠送积分活动 825581
科研通“疑难数据库(出版商)”最低求助积分说明 775663