亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing trainee performance in obstetric ultrasound through an artificial intelligence system: randomized controlled trial

医学 考试(生物学) 医学物理学 随机对照试验 超声波 物理疗法 医学教育 外科 放射科 古生物学 生物
作者
Ting Lei,Qiao Zheng,Jianxing Feng,L. Zhang,Qian Zhou,M. He,Min-Huei Lin,Hongning Xie
出处
期刊:Ultrasound in Obstetrics & Gynecology [Wiley]
卷期号:64 (4): 453-462 被引量:1
标识
DOI:10.1002/uog.29101
摘要

ABSTRACT Objective Performing obstetric ultrasound scans is challenging for inexperienced operators; therefore, the prenatal screening artificial intelligence system (PSAIS) software was developed to provide real‐time feedback and guidance for trainees during their scanning procedures. The aim of this study was to investigate the potential benefits of utilizing such an artificial intelligence system to enhance the efficiency of obstetric ultrasound training in acquiring and interpreting standard basic views. Methods A prospective, single‐center randomized controlled study was conducted at The First Affiliated Hospital of Sun Yat‐sen University. From September 2022 to April 2023, residents with no prior obstetric ultrasound experience were recruited and assigned randomly to either a PSAIS‐assisted training group or a conventional training group. Each trainee underwent a four‐cycle practical scan training program, performing 20 scans in each cycle on pregnant volunteers at 18–32 gestational weeks, focusing on acquiring and interpreting standard basic views. At the end of each cycle, a test scan evaluated trainees' ability to obtain standard ultrasound views without PSAIS assistance, and image quality was rated by both the trainees themselves and an expert (in a blinded manner). The primary outcome was the number of training cycles required for each trainee to meet a certain standard of proficiency (i.e. end‐of‐cycle test scored by the expert at ≥ 80%). Secondary outcomes included the expert ratings of the image quality in each trainee's end‐of‐cycle test and the discordance between ratings by trainees and the expert. Results In total, 32 residents and 1809 pregnant women (2720 scans) were recruited for the study. The PSAIS‐assisted trainee group required significantly fewer training cycles compared with the non‐PSAIS‐assisted group to meet quality requirements ( P = 0.037). Based on the expert ratings of image quality, the PSAIS‐assisted training group exhibited superior ability in acquiring standard imaging views compared with the conventional training group in the third ( P = 0.012) and fourth ( P < 0.001) cycles. In both groups, the discordance between trainees' ratings of the quality of their own images and the expert's ratings decreased with increasing training time. A statistically significant difference in overall trainee–expert rating discordance between the two groups emerged at the end of the first training cycle and remained at every cycle thereafter ( P < 0.013). Conclusion By assisting inexperienced trainees in obtaining and interpreting standard basic obstetric scanning views, the use of artificial intelligence‐assisted systems has the potential to improve training effectiveness. © 2024 International Society of Ultrasound in Obstetrics and Gynecology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助天空之城采纳,获得30
8秒前
George完成签到,获得积分10
9秒前
36秒前
未济终焉发布了新的文献求助10
41秒前
50秒前
MRJJJJ完成签到,获得积分10
53秒前
平淡的中心完成签到,获得积分10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
轻松小张应助herococa采纳,获得150
2分钟前
mathmotive完成签到,获得积分10
2分钟前
林狗完成签到 ,获得积分10
3分钟前
3分钟前
天空之城发布了新的文献求助30
3分钟前
Orange应助大胆绮采纳,获得10
3分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
herococa完成签到,获得积分10
3分钟前
4分钟前
5分钟前
大胆绮发布了新的文献求助10
5分钟前
糖伯虎完成签到 ,获得积分10
5分钟前
小刘哥加油完成签到 ,获得积分10
5分钟前
缓慢的语琴完成签到 ,获得积分10
6分钟前
田様应助大力采纳,获得30
6分钟前
6分钟前
wjywjy发布了新的文献求助10
7分钟前
打打应助呵呵心情采纳,获得10
7分钟前
7分钟前
呵呵心情发布了新的文献求助10
7分钟前
呵呵心情完成签到,获得积分20
7分钟前
Dannnn发布了新的文献求助10
7分钟前
倾听昆语完成签到 ,获得积分10
7分钟前
Kkk完成签到 ,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
大胆绮完成签到,获得积分10
7分钟前
神外王001完成签到 ,获得积分10
7分钟前
LRxxx完成签到 ,获得积分10
8分钟前
风趣的靖雁完成签到 ,获得积分10
8分钟前
9分钟前
科研通AI5应助科研通管家采纳,获得10
9分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777609
求助须知:如何正确求助?哪些是违规求助? 3322969
关于积分的说明 10212809
捐赠科研通 3038316
什么是DOI,文献DOI怎么找? 1667308
邀请新用户注册赠送积分活动 798103
科研通“疑难数据库(出版商)”最低求助积分说明 758229