已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Deep Learning System to Predict Epithelial Dysplasia in Oral Leukoplakia

医学 组织病理学 白斑 口腔白斑 上皮发育不良 发育不良 活检 布里氏评分 金标准(测试) 癌症 病理 核医学 放射科 内科学 人工智能 计算机科学
作者
John Adeoye,Akhilanand Chaurasia,Abdulwarith Akinshipo,Ibrahim Suleiman,Li Wu Zheng,Anthony W.I. Lo,Jeffrey J. Pu,Seidu Adebayo Bello,Fadekemi Olufunmilayo Oginni,Ekhosuehi Theophilus Agho,Ramat Oyebunmi Braimah,Yu‐Xiong Su
出处
期刊:Journal of Dental Research [SAGE Publishing]
卷期号:103 (12): 1218-1226
标识
DOI:10.1177/00220345241272048
摘要

Oral leukoplakia (OL) has an inherent disposition to develop oral cancer. OL with epithelial dysplasia (OED) is significantly likely to undergo malignant transformation; however, routine OED assessment is invasive and challenging. This study investigated whether a deep learning (DL) model can predict dysplasia probability among patients with leukoplakia using oral photographs. In addition, we assessed the performance of the DL model in comparison with clinicians’ ratings and in providing decision support on dysplasia assessment. Retrospective images of leukoplakia taken before biopsy/histopathology were obtained to construct the DL model ( n = 2,073). OED status following histopathology was used as the gold standard for all images. We first developed, fine-tuned, and internally validated a DL architecture with an EfficientNet-B2 backbone that outputs the predicted probability of OED, OED status, and regions-of-interest heat maps. Then, we tested the performance of the DL model on a temporal cohort before geographical validation. We also assessed the model’s performance at external validation with opinions provided by human raters on OED status. Performance evaluation included discrimination, calibration, and potential net benefit. The DL model achieved good Brier scores, areas under the curve, and balanced accuracies of 0.124 (0.079–0.169), 0.882 (0.838–0.926), and 81.8% (76.5–87.1) at testing and 0.146 (0.112–0.18), 0.828 (0.792–0.864), and 76.4% (72.3–80.5) at external validation, respectively. In addition, the model had a higher potential net benefit in selecting patients with OL for biopsy/histopathology during OED assessment than when biopsies were performed for all patients. External validation also showed that the DL model had better accuracy than 92.3% (24/26) of human raters in classifying the OED status of leukoplakia from oral images (balanced accuracy: 54.8%–79.7%). Overall, the photograph-based intelligent model can predict OED probability and status in leukoplakia with good calibration and discrimination, which shows potential for decision support to select patients for biopsy/histopathology, obviate unnecessary biopsy, and assist in patient self-monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助wq采纳,获得10
刚刚
1秒前
小于完成签到,获得积分10
2秒前
南冥完成签到 ,获得积分10
2秒前
小77发布了新的文献求助10
3秒前
整齐凝竹完成签到 ,获得积分10
4秒前
罗浩发布了新的文献求助10
4秒前
dadadad完成签到,获得积分10
4秒前
动漫大师发布了新的文献求助10
5秒前
桐桐应助oscar采纳,获得10
6秒前
无花果应助dadadad采纳,获得10
7秒前
8秒前
共享精神应助shencheng采纳,获得10
9秒前
小椰子完成签到,获得积分10
9秒前
11秒前
江流儿发布了新的文献求助10
16秒前
liufan完成签到 ,获得积分10
16秒前
18秒前
22秒前
华仔应助GG小丁同学采纳,获得10
22秒前
22秒前
24秒前
星辰大海应助russ采纳,获得10
25秒前
小马不会做科研完成签到,获得积分10
28秒前
kotea完成签到,获得积分10
30秒前
顾矜应助yyzc6162采纳,获得10
31秒前
31秒前
CYY发布了新的文献求助10
34秒前
一品真意完成签到,获得积分10
36秒前
笑而不语完成签到 ,获得积分10
36秒前
36秒前
VDC发布了新的文献求助10
38秒前
科研完成签到 ,获得积分10
38秒前
38秒前
阿北完成签到,获得积分10
39秒前
fancy完成签到 ,获得积分10
40秒前
羽羽完成签到 ,获得积分10
40秒前
41秒前
炙热念双发布了新的文献求助10
44秒前
是事可可发布了新的文献求助10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777504
求助须知:如何正确求助?哪些是违规求助? 3322864
关于积分的说明 10212074
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667229
邀请新用户注册赠送积分活动 798050
科研通“疑难数据库(出版商)”最低求助积分说明 758201