已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The usefulness of artificial intelligence for safety assessment of different transport modes

人工神经网络 智能交通系统 航空 人工智能 计算机科学 支持向量机 工程类 鉴定(生物学) 机器学习 毒物控制 撞车 运输工程 环境卫生 航空航天工程 生物 医学 程序设计语言 植物
作者
Dimitrios I. Tselentis,Eleonora Papadimitriou,Pieter van Gelder
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:186: 107034-107034 被引量:48
标识
DOI:10.1016/j.aap.2023.107034
摘要

Recent research in transport safety focuses on the processing of large amounts of available data by means of intelligent systems, in order to decrease the number of accidents for transportation users. Several Machine Learning (ML) and Artificial Intelligence (AI) applications have been developed to address safety problems and improve efficiency of transportation systems. However exchange of knowledge between transport modes has been limited. This paper reviews the ML and AI methods used in different transport modes (road, rail, maritime and aviation) to address safety problems, in order to identify good practices and experiences that can be transferable between transport modes. The methods examined include statistical and econometric methods, algorithmic approaches, classification and clustering methods, artificial neural networks (ANN) as well as optimization and dimension reduction techniques. Our research reveals the increasing interest of transportation researchers and practitioners in AI applications for crash prediction, incident/failure detection, pattern identification, driver/operator or route assistance, as well as optimization problems. The most popular and efficient methods used in all transport modes are ANN, SVM, Hidden Markov Models and Bayesian models. The type of the analytical technique is mainly driven by the purpose of the safety analysis performed. Finally, a wider variety of AI and ML methodologies is observed in road transport mode, which also appears to concentrate a higher, and constantly increasing, number of studies compared to the other modes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪白沛春完成签到,获得积分10
2秒前
ypp发布了新的文献求助10
2秒前
韭黄发布了新的文献求助10
3秒前
FashionBoy应助Cindy采纳,获得10
3秒前
大模型应助清脆的大开采纳,获得10
4秒前
杨武天一发布了新的文献求助10
4秒前
刘MTY发布了新的文献求助10
4秒前
NN发布了新的文献求助10
5秒前
5秒前
可爱的函函应助yc采纳,获得10
5秒前
6秒前
希望天下0贩的0应助张张采纳,获得10
6秒前
善学以致用应助韭黄采纳,获得10
6秒前
庚午发布了新的文献求助10
6秒前
哇芽完成签到,获得积分10
7秒前
不要再忘登陆密码了完成签到,获得积分10
8秒前
迷你的友卉完成签到,获得积分20
8秒前
9秒前
影子完成签到,获得积分10
9秒前
9秒前
herui发布了新的文献求助10
10秒前
12秒前
NN完成签到,获得积分20
13秒前
13秒前
李健应助SYxYouth采纳,获得10
14秒前
15秒前
15秒前
15秒前
16秒前
Billie发布了新的文献求助20
17秒前
共享精神应助Trey采纳,获得10
19秒前
英姑应助anasy采纳,获得10
19秒前
20秒前
stay发布了新的文献求助10
20秒前
天真的丹烟完成签到,获得积分10
21秒前
21秒前
22秒前
健壮柚子完成签到 ,获得积分10
23秒前
学无止境完成签到 ,获得积分10
24秒前
kx完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400986
求助须知:如何正确求助?哪些是违规求助? 4520031
关于积分的说明 14077904
捐赠科研通 4432951
什么是DOI,文献DOI怎么找? 2433919
邀请新用户注册赠送积分活动 1426111
关于科研通互助平台的介绍 1404733