An anti-noise fault diagnosis approach for rolling bearings based on multiscale CNN-LSTM and a deep residual learning model

计算机科学 卷积神经网络 残余物 卷积(计算机科学) 核(代数) 深度学习 人工智能 噪音(视频) 断层(地质) 模式识别(心理学) 特征(语言学) 特征提取 人工神经网络 语音识别 算法 数学 哲学 地质学 地震学 图像(数学) 组合数学 语言学
作者
Hongming Chen,Wei Meng,Yongjian Li,Qing Xiong
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (4): 045013-045013 被引量:82
标识
DOI:10.1088/1361-6501/acb074
摘要

Abstract Bearing fault vibration signals collected in real engineering cases often contain environmental noise which can easily mask the fault type characteristics of vibration signals, making it difficult to determine the corresponding fault type when traditional deep learning methods are used for fault diagnosis. To solve the above problem, a neural network model named multiscale CNN-LSTM (convolutional neural network-long short-term memory) and a deep residual learning model was designed, which combines a multiscale wide CNN-LSTM module and a deep residual module for rolling bearing fault diagnosis. In this model, a wide convolution kernel CNN-LSTM structure with different convolution scales is used to extract a variety of different types of frequency and sequential features from vibration signals. It is worth noting that the wide convolution kernel CNN-LSTM structure not only has stronger feature extraction performance compared with the common convolution layer but can also reduce the interference of high-frequency noise. Moreover, the deep residual module with a wide convolution kernel CNN-LSTM structure is used to further improve the feature expression ability of the proposed model. The above algorithm enables the proposed model to better extract the fault features hidden in the noise signal. When compared with some state-of-the-art methods, the experimental results showed that this model has better anti-noise performance and better generalization ability for rolling bearing fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
YueYue完成签到,获得积分20
2秒前
arui完成签到,获得积分10
2秒前
gffh完成签到,获得积分10
3秒前
3秒前
zzzzh发布了新的文献求助10
3秒前
3秒前
希望天下0贩的0应助ycccSZU采纳,获得10
3秒前
4秒前
向阳而生o完成签到,获得积分10
4秒前
赖同学发布了新的文献求助10
4秒前
orixero应助甜蜜邑采纳,获得10
4秒前
5秒前
5秒前
FashionBoy应助Lyra采纳,获得10
5秒前
5秒前
amnesiamber完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
儒雅的豁完成签到,获得积分10
6秒前
SciGPT应助居北采纳,获得10
6秒前
共享精神应助lover采纳,获得30
7秒前
7秒前
7秒前
yuyan发布了新的文献求助10
7秒前
8秒前
科研通AI2S应助伽娜采纳,获得10
8秒前
8秒前
8秒前
闪闪的熠彤完成签到,获得积分10
8秒前
9秒前
涙痕发布了新的文献求助10
9秒前
忍冬半夏完成签到,获得积分10
9秒前
10秒前
10秒前
Frost完成签到,获得积分10
10秒前
hhhhhhl完成签到,获得积分10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
复杂系统建模与弹性模型研究 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5485990
求助须知:如何正确求助?哪些是违规求助? 4585645
关于积分的说明 14405938
捐赠科研通 4516086
什么是DOI,文献DOI怎么找? 2474631
邀请新用户注册赠送积分活动 1460519
关于科研通互助平台的介绍 1433722