Artificial Intelligence-Based Total Mesorectal Excision Plane Navigation in Laparoscopic Colorectal Surgery

全直肠系膜切除术 医学 结直肠外科 外科 腹腔镜手术 结直肠癌 人工智能 腹腔镜检查 腹部外科 癌症 计算机科学 内科学
作者
Takahiro Igaki,Daichi Kitaguchi,Shigehiro Kojima,Hiro Hasegawa,Nobuyoshi Takeshita,Kensaku Mori,Yusuke Kinugasa,Masaaki Ito
出处
期刊:Diseases of The Colon & Rectum [Lippincott Williams & Wilkins]
卷期号:65 (5): e329-e333 被引量:33
标识
DOI:10.1097/dcr.0000000000002393
摘要

Total mesorectal excision is the standard surgical procedure for rectal cancer because it is associated with low local recurrence rates. To the best of our knowledge, this is the first study to use an image-guided navigation system with total mesorectal excision.The impact of innovation is the development of a deep learning-based image-guided navigation system for areolar tissue in the total mesorectal excision plane. Such a system might be helpful to surgeons because areolar tissue can be used as a landmark for the appropriate dissection plane.This was a single-center experimental feasibility study involving 32 randomly selected patients who had undergone laparoscopic left-sided colorectal resection between 2015 and 2019. Deep learning-based semantic segmentation of areolar tissue in the total mesorectal excision plane was performed. Intraoperative images capturing the total mesorectal excision scene extracted from left colorectal laparoscopic resection videos were used as training data for the deep learning model. Six hundred annotation images were created from 32 videos, with 528 images in the training and 72 images in the test data sets. The experimental feasibility study was conducted at the Department of Colorectal Surgery, National Cancer Center Hospital East, Chiba, Japan. Dice coefficient was used to evaluate semantic segmentation accuracy for areolar tissue.The developed semantic segmentation model helped locate and highlight the areolar tissue area in the total mesorectal excision plane. The accuracy and generalization performance of deep learning models depend mainly on the quantity and quality of the training data. This study had only 600 images; thus, more images for training are necessary to improve the recognition accuracy.We successfully developed a total mesorectal excision plane image-guided navigation system based on an areolar tissue segmentation approach with high accuracy. This may aid surgeons in recognizing the total mesorectal excision plane for dissection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
本恩宁完成签到 ,获得积分10
刚刚
刚刚
风趣灵槐完成签到,获得积分10
1秒前
1秒前
花开富贵发布了新的文献求助10
1秒前
2秒前
Akim应助油个大饼呜呜呜采纳,获得10
2秒前
Roxy发布了新的文献求助10
2秒前
mxdckd发布了新的文献求助10
2秒前
Orange应助xiewuhua采纳,获得10
4秒前
MchemG应助wodeqiche2007采纳,获得30
4秒前
阮人雄完成签到,获得积分10
4秒前
5秒前
5秒前
完美世界应助Roxy采纳,获得10
7秒前
8秒前
10秒前
10秒前
科研通AI5应助逆天了呀采纳,获得10
10秒前
田恬完成签到,获得积分10
12秒前
机器猫发布了新的文献求助10
13秒前
14秒前
14秒前
完美的水杯完成签到 ,获得积分10
14秒前
阳和启蛰发布了新的文献求助10
15秒前
John应助wert采纳,获得50
16秒前
17秒前
完美世界应助端庄斑马采纳,获得10
17秒前
汉堡包应助科研小蚂蚁采纳,获得10
19秒前
动漫大师发布了新的文献求助20
19秒前
秦华华发布了新的文献求助10
19秒前
ccf2025完成签到,获得积分10
22秒前
22秒前
22秒前
23秒前
Hello应助三三四采纳,获得10
27秒前
auuu完成签到,获得积分20
27秒前
28秒前
28秒前
DDDDD发布了新的文献求助10
28秒前
高分求助中
Practitioner Research at Doctoral Level 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797638
求助须知:如何正确求助?哪些是违规求助? 3343077
关于积分的说明 10314637
捐赠科研通 3059803
什么是DOI,文献DOI怎么找? 1679098
邀请新用户注册赠送积分活动 806343
科研通“疑难数据库(出版商)”最低求助积分说明 763102