已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Semi-Structural Interview-Based Chinese Multimodal Depression Corpus Towards Automatic Preliminary Screening of Depressive Disorders

萧条(经济学) 模式 重性抑郁障碍 心理学 多模态 精神科 临床心理学 计算机科学 万维网 社会科学 认知 社会学 经济 宏观经济学
作者
Bochao Zou,Jiali Han,Yingxue Wang,Rui Liu,Shenghui Zhao,Lei Feng,Xiangwen Lyu,Huimin Ma
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (4): 2823-2838 被引量:62
标识
DOI:10.1109/taffc.2022.3181210
摘要

Depression is a common psychiatric disorder worldwide. However, in China, a considerable number of patients with depression are not diagnosed, and most of them are not aware of their depression. Despite increasing efforts, the goal of automatic depression screening from behavioral indicators has not been achieved. A major limitation is the lack of available multimodal depression corpus in Chinese since linguistic knowledge is crucial in clinical practice. Therefore, we first carried out a comprehensive survey with psychiatrists from a renowned psychiatric hospital to identify key interview topics which are highly related to the diagnosis of depression. Then, a semi-structural interview study was conducted over a year with subjects who have undergone clinical diagnosis and professional assessment. After that, Visual, acoustic, and textual features were extracted and analyzed between the two groups, statistically significant differences were observed in all three modalities. Benchmark evaluations of both single modal and multimodal fusion methods of depression assessment were also performed. A multimodal transformer-based fusion approach achieved the best performance. Finally, the proposed Chinese Multimodal Depression Corpus (CMDC) was made publicly available after de-identification and annotation. Hopefully, the release of this corpus would promote the research progress and practical applications of automatic depression screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田田发布了新的文献求助10
1秒前
linsen发布了新的文献求助10
2秒前
yzizz发布了新的文献求助10
7秒前
FashionBoy应助田田采纳,获得10
8秒前
9秒前
权翼完成签到,获得积分10
12秒前
sookie完成签到 ,获得积分10
13秒前
14秒前
16秒前
霸气的夏蓉完成签到,获得积分20
16秒前
17秒前
晒太阳啦发布了新的文献求助60
18秒前
今后应助酚醛树脂采纳,获得10
19秒前
故城完成签到 ,获得积分10
19秒前
dirk完成签到 ,获得积分10
20秒前
tanrui发布了新的文献求助10
22秒前
十月木樨发布了新的文献求助10
23秒前
23秒前
十分红处竟成灰完成签到 ,获得积分20
24秒前
meihui完成签到 ,获得积分10
25秒前
26秒前
科研通AI6应助玻璃弹珠采纳,获得10
28秒前
jkkkwang发布了新的文献求助10
29秒前
31秒前
smm完成签到 ,获得积分10
32秒前
33秒前
朱加德发布了新的文献求助10
33秒前
命苦科研人完成签到,获得积分10
34秒前
35秒前
知弈否发布了新的文献求助10
37秒前
Orange应助命苦科研人采纳,获得10
38秒前
小二郎应助十月木樨采纳,获得10
38秒前
39秒前
BowieHuang应助科研通管家采纳,获得10
39秒前
39秒前
Ava应助無端采纳,获得10
40秒前
大模型应助米可熊采纳,获得20
43秒前
43秒前
英俊的铭应助朱加德采纳,获得10
44秒前
CodeCraft应助小赖想睡觉采纳,获得10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542985
求助须知:如何正确求助?哪些是违规求助? 4629125
关于积分的说明 14610877
捐赠科研通 4570403
什么是DOI,文献DOI怎么找? 2505738
邀请新用户注册赠送积分活动 1483053
关于科研通互助平台的介绍 1454361