Detection of tropical cyclone genesis via quantitative satellite ocean surface wind pattern and intensity analyses using decision trees

热带气旋 环境科学 遥感 卫星 风速 气象学 海面温度 强度(物理) 地质学 地理 物理 量子力学 航空航天工程 工程类
作者
Myung‐Sook Park,Minsang Kim,Myong‐In Lee,Jungho Im,Seonyoung Park
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:183: 205-214 被引量:45
标识
DOI:10.1016/j.rse.2016.06.006
摘要

Microwave remote sensing can be used to measure ocean surface winds, which can be used to detect tropical cyclone (TC) formation in an objective and quantitative way. This study develops a new model using WindSat data and a machine learning approach. Dynamic and hydrologic indices are quantified from WindSat wind and rainfall snapshot images over 352 developing and 973 non-developing tropical disturbances from 2005 to 2009. The degree of cyclonic circulation symmetry near the system center is quantified using circular variances, and the degree of strong wind aggregation (heavy rainfall) is defined using a spatial pattern analysis program tool called FRAGSTATS. In addition, the circulation strength and convection are defined based on the areal averages of wind speed and rainfall. An objective TC formation detection model is then developed by applying those indices to a machine-learning decision tree algorithm using calibration data from 2005 to 2007. Results suggest that the circulation symmetry and intensity are the most important parameters that characterize developing tropical disturbances. Despite inherent sampling issues associated with the polar orbiting satellite, a validation from 2008 to 2009 shows that the model produced a positive detection rate of approximately 95.3% and false alarm rate of 28.5%, which is comparable with the pre-existing objective methods based on cloud-pattern recognition. This study suggests that the quantitative microwave-sensed dynamic ocean surface wind pattern and intensity recognition model provides a new method of detecting TC formation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爱喝酒的酒葫芦完成签到,获得积分10
2秒前
小蛋挞完成签到,获得积分10
2秒前
Jeneration完成签到 ,获得积分10
3秒前
Zhouzhou发布了新的文献求助10
5秒前
华仔应助yfy采纳,获得10
6秒前
西门老黑完成签到,获得积分10
6秒前
6秒前
冷艳慕青发布了新的文献求助10
7秒前
顾矜应助Maceyyy采纳,获得10
7秒前
Hilda007发布了新的文献求助10
9秒前
10秒前
123456发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
好巧完成签到,获得积分10
13秒前
zhangenbo完成签到,获得积分10
13秒前
香哥发布了新的文献求助10
14秒前
杜杨帆发布了新的文献求助10
14秒前
14秒前
ZCN发布了新的文献求助10
15秒前
15秒前
lee发布了新的文献求助10
15秒前
研友_LjqB28完成签到,获得积分10
15秒前
yingxinfu发布了新的文献求助10
16秒前
顾矜应助Mark0001采纳,获得10
17秒前
17秒前
小马甲应助XUYQ采纳,获得10
17秒前
zhangenbo发布了新的文献求助10
18秒前
JamesPei应助ZCN采纳,获得10
18秒前
研友_LMBAXn发布了新的文献求助10
18秒前
爆米花应助蓝莓采纳,获得10
19秒前
19秒前
文静昊强发布了新的文献求助10
19秒前
小蛋挞发布了新的文献求助10
20秒前
Koalas举报赵寒迟求助涉嫌违规
20秒前
英姑应助ay采纳,获得10
22秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5059385
求助须知:如何正确求助?哪些是违规求助? 4284129
关于积分的说明 13350598
捐赠科研通 4101575
什么是DOI,文献DOI怎么找? 2245625
邀请新用户注册赠送积分活动 1251461
关于科研通互助平台的介绍 1182103