Applications of deep learning to MRI images: A survey

深度学习 人工智能 计算机科学 图像处理 磁共振成像 模式 实时核磁共振成像 分割 机器学习 图像(数学) 放射科 医学 社会学 社会科学
作者
Jin Liu,Yi Pan,Min Li,Ziyue Chen,Lu Tang,Chengqian Lu,Jianxin Wang
出处
期刊:Big data mining and analytics [Tsinghua University Press]
卷期号:1 (1): 1-18 被引量:282
标识
DOI:10.26599/bdma.2018.9020001
摘要

Deep learning provides exciting solutions in many fields, such as image analysis, natural language processing, and expert system, and is seen as a key method for various future applications. On account of its non-invasive and good soft tissue contrast, in recent years, Magnetic Resonance Imaging (MRI) has been attracting increasing attention. With the development of deep learning, many innovative deep learning methods have been proposed to improve MRI image processing and analysis performance. The purpose of this article is to provide a comprehensive overview of deep learning-based MRI image processing and analysis. First, a brief introduction of deep learning and imaging modalities of MRI images is given. Then, common deep learning architectures are introduced. Next, deep learning applications of MRI images, such as image detection, image registration, image segmentation, and image classification are discussed. Subsequently, the advantages and weaknesses of several common tools are discussed, and several deep learning tools in the applications of MRI images are presented. Finally, an objective assessment of deep learning in MRI applications is presented, and future developments and trends with regard to deep learning for MRI images are addressed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cjx发布了新的文献求助10
刚刚
科研通AI6应助suuu采纳,获得10
刚刚
文艺的电源完成签到,获得积分10
刚刚
舍予发布了新的文献求助30
刚刚
小广发布了新的文献求助10
刚刚
科研通AI6应助一颗西柚采纳,获得10
1秒前
大模型应助科研喵采纳,获得10
1秒前
英姑应助我真没想重生啊采纳,获得10
1秒前
wave完成签到 ,获得积分10
2秒前
nazi完成签到,获得积分10
2秒前
2秒前
张朝程发布了新的文献求助10
2秒前
chen发布了新的文献求助10
2秒前
2秒前
杜萌萌完成签到,获得积分10
3秒前
香蕉觅云应助笑点低钥匙采纳,获得10
3秒前
3秒前
2411790866xia发布了新的文献求助10
3秒前
4秒前
zzer完成签到,获得积分10
4秒前
wqing完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
渔渔完成签到 ,获得积分10
5秒前
晨曦应助zy采纳,获得10
6秒前
Neuronguy完成签到,获得积分10
6秒前
7秒前
科研通AI6应助煜琪采纳,获得10
7秒前
桐桐应助王贤平采纳,获得10
7秒前
CodeCraft应助otto12306采纳,获得10
7秒前
8秒前
matrixu发布了新的文献求助30
9秒前
惜昭完成签到 ,获得积分10
9秒前
9秒前
moon完成签到,获得积分20
9秒前
10秒前
10秒前
11秒前
11秒前
情怀应助咚咚采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430202
求助须知:如何正确求助?哪些是违规求助? 4543438
关于积分的说明 14187210
捐赠科研通 4461576
什么是DOI,文献DOI怎么找? 2446244
邀请新用户注册赠送积分活动 1437490
关于科研通互助平台的介绍 1414381