Lipidomics Profiling and Risk of Cardiovascular Disease in the Prospective Population-Based Bruneck Study

医学 脂类学 仿形(计算机编程) 疾病 人口 前瞻性队列研究 内科学 生物信息学 环境卫生 操作系统 生物 计算机科学
作者
Christin Stegemann,Raimund Pechlaner,Peter Willeit,Sarah R. Langley,Massimo Mangino,Ursula Mayr,Cristina Menni,Alireza Moayyeri,Peter Santer,Gregor Rungger,Tim D. Spector,Johann Willeit,Stefan Kiechl,Manuel Mayr
出处
期刊:Circulation [Lippincott Williams & Wilkins]
卷期号:129 (18): 1821-1831 被引量:540
标识
DOI:10.1161/circulationaha.113.002500
摘要

Background— The bulk of cardiovascular disease risk is not explained by traditional risk factors. Recent advances in mass spectrometry allow the identification and quantification of hundreds of lipid species. Molecular lipid profiling by mass spectrometry may improve cardiovascular risk prediction. Methods and Results— Lipids were extracted from 685 plasma samples of the prospective population-based Bruneck Study (baseline evaluation in 2000). One hundred thirty-five lipid species from 8 different lipid classes were profiled by shotgun lipidomics with the use of a triple-quadrupole mass spectrometer. Levels of individual species of cholesterol esters (CEs), lysophosphatidylcholines, phosphatidylcholines, phosphatidylethanolamines (PEs), sphingomyelins, and triacylglycerols (TAGs) were associated with cardiovascular disease over a 10-year observation period (2000–2010, 90 incident events). Among the lipid species with the strongest predictive value were TAGs and CEs with a low carbon number and double-bond content, including TAG(54:2) and CE(16:1), as well as PE(36:5) ( P =5.1×10 −7 , 2.2×10 −4 , and 2.5×10 −3 , respectively). Consideration of these 3 lipid species on top of traditional risk factors resulted in improved risk discrimination and classification for cardiovascular disease (cross-validated ΔC index, 0.0210 [95% confidence interval, 0.0010-0.0422]; integrated discrimination improvement, 0.0212 [95% confidence interval, 0.0031-0.0406]; and continuous net reclassification index, 0.398 [95% confidence interval, 0.175-0.619]). A similar shift in the plasma fatty acid composition was associated with cardiovascular disease in the UK Twin Registry (n=1453, 45 cases). Conclusions— This study applied mass spectrometry-based lipidomics profiling to population-based cohorts and identified molecular lipid signatures for cardiovascular disease. Molecular lipid species constitute promising new biomarkers that outperform the conventional biochemical measurements of lipid classes currently used in clinics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gracie完成签到,获得积分10
1秒前
FSR完成签到 ,获得积分10
2秒前
汉堡包应助耿耿星河采纳,获得10
3秒前
叮叮叮铛完成签到,获得积分10
4秒前
Quanta完成签到,获得积分10
4秒前
瘦瘦的艳发布了新的文献求助20
4秒前
6秒前
Miracle_wh完成签到 ,获得积分10
7秒前
AZQ完成签到,获得积分10
11秒前
天天快乐应助MEI采纳,获得10
11秒前
15秒前
16秒前
姜姜姜姜完成签到 ,获得积分10
17秒前
温柔柜子应助顺顺顺采纳,获得20
17秒前
程子完成签到,获得积分10
18秒前
浮游应助HJJHJH采纳,获得20
19秒前
Seamewww发布了新的文献求助10
20秒前
mukji发布了新的文献求助10
20秒前
21秒前
李元强完成签到,获得积分10
21秒前
水云身完成签到,获得积分10
22秒前
QJ完成签到,获得积分10
25秒前
秃顶水箭龟完成签到,获得积分10
25秒前
张艳坤发布了新的文献求助10
26秒前
27秒前
mukji完成签到,获得积分10
27秒前
28秒前
Seamewww完成签到,获得积分10
28秒前
30秒前
周周完成签到,获得积分10
30秒前
30秒前
朱华彪完成签到,获得积分10
32秒前
李健的小迷弟应助Huanghh采纳,获得30
33秒前
33秒前
Xiaoxiao应助yyy采纳,获得10
33秒前
Akim应助queen采纳,获得10
33秒前
Maestro_S应助yyy采纳,获得10
33秒前
小碗熊发布了新的文献求助10
33秒前
清脆幻枫发布了新的文献求助10
34秒前
34秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207406
求助须知:如何正确求助?哪些是违规求助? 4385353
关于积分的说明 13656706
捐赠科研通 4243935
什么是DOI,文献DOI怎么找? 2328474
邀请新用户注册赠送积分活动 1326166
关于科研通互助平台的介绍 1278375