卷积神经网络
计算机科学
卷积(计算机科学)
残余物
计算复杂性理论
人工智能
特征提取
调制(音乐)
深度学习
推论
模式识别(心理学)
任务(项目管理)
特征(语言学)
建筑
算法
计算机工程
机器学习
人工神经网络
工程类
艺术
哲学
语言学
系统工程
视觉艺术
美学
作者
Zhongyong Wang,Dongzhe Sun,Kexian Gong,Wei Wang,Peng Sun
出处
期刊:Electronics
[Multidisciplinary Digital Publishing Institute]
日期:2021-11-02
卷期号:10 (21): 2679-2679
被引量:9
标识
DOI:10.3390/electronics10212679
摘要
Automatic modulation classification (AMC) algorithms based on deep learning (DL) have been widely studied in the past decade, showing significant performance advantage compared to traditional ones. However, the existing DL methods generally behave worse in computational complexity. For this, this paper proposes a lightweight convolutional neural network (CNN) for AMC task, where we design a depthwise separable convolution (DSC) residual architecture for feature extraction to prevent the vanishing gradient problem and lighten the computational burden. Besides that, in order to further reduce model complexity, global depthwise convolution (GDWConv) is adopted for feature reconstruction after the last (non-global) convolutional layer. Compared to recent works, the experimental results show that the proposed network can save approximately 70~98% model parameters and 30~99% inference time on two well-known benchmarks.
科研通智能强力驱动
Strongly Powered by AbleSci AI