Data Extrapolation From Learned Prior Images for Truncation Correction in Computed Tomography

稳健性(进化) 迭代重建 深度学习 计算机科学 外推法 图像质量 截断(统计) 人工智能 数据一致性 均方误差 算法 数学 计算机视觉 图像(数学) 机器学习 统计 操作系统 基因 生物化学 化学
作者
Yixing Huang,Alexander Preuhs,Michael Manhart,Guenter Lauritsch,Andreas Maier
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (11): 3042-3053 被引量:26
标识
DOI:10.1109/tmi.2021.3072568
摘要

Data truncation is a common problem in computed tomography (CT). Truncation causes cupping artifacts inside the field-of-view (FOV) and anatomical structures missing outside the FOV. Deep learning has achieved impressive results in CT reconstruction from limited data. However, its robustness is still a concern for clinical applications. Although the image quality of learning-based compensation schemes may be inadequate for clinical diagnosis, they can provide prior information for more accurate extrapolation than conventional heuristic extrapolation methods. With extrapolated projection, a conventional image reconstruction algorithm can be applied to obtain a final reconstruction. In this work, a general plug-and-play (PnP) method for truncation correction is proposed based on this idea, where various deep learning methods and conventional reconstruction algorithms can be plugged in. Such a PnP method integrates data consistency for measured data and learned prior image information for truncated data. This shows to have better robustness and interpretability than deep learning only. To demonstrate the efficacy of the proposed PnP method, two state-of-the-art deep learning methods, FBPConvNet and Pix2pixGAN, are investigated for truncation correction in cone-beam CT in noise-free and noisy cases. Their robustness is evaluated by showing false negative and false positive lesion cases. With our proposed PnP method, false lesion structures are corrected for both deep learning methods. For FBPConvNet, the root-mean-square error (RMSE) inside the FOV can be improved from 92HU to around 30HU by PnP in the noisy case. Pix2pixGAN solely achieves better image quality than FBPConvNet solely for truncation correction in general. PnP further improves the RMSE inside the FOV from 42HU to around 27HU for Pix2pixGAN. The efficacy of PnP is also demonstrated on real clinical head data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
YXY发布了新的文献求助10
1秒前
柚子发布了新的文献求助10
2秒前
红箭烟雨完成签到,获得积分10
3秒前
英俊的铭应助优美寒梦采纳,获得10
3秒前
4秒前
4秒前
5秒前
5秒前
5秒前
帅气的宽发布了新的文献求助10
6秒前
不卷心菜发布了新的文献求助10
7秒前
零度酷冷发布了新的文献求助10
8秒前
Xi发布了新的文献求助10
9秒前
YXY完成签到,获得积分10
9秒前
科研一霸完成签到,获得积分10
9秒前
123发布了新的文献求助10
10秒前
烟花应助诚c采纳,获得10
10秒前
奔流的河发布了新的文献求助10
10秒前
iiiau完成签到,获得积分10
11秒前
怕黑念薇发布了新的文献求助10
11秒前
Jenny发布了新的文献求助10
11秒前
科研一霸发布了新的文献求助10
12秒前
善学以致用应助款款采纳,获得10
12秒前
但大图完成签到 ,获得积分10
13秒前
不想做实验完成签到 ,获得积分10
13秒前
不卷心菜完成签到,获得积分20
14秒前
甘乐发布了新的文献求助10
14秒前
骆十八完成签到,获得积分10
15秒前
王水水发布了新的文献求助10
15秒前
菲菲发布了新的文献求助10
16秒前
核桃应助jinjun采纳,获得10
17秒前
Xi完成签到,获得积分10
17秒前
18秒前
活泼的机器猫完成签到,获得积分10
18秒前
小熊可可茶关注了科研通微信公众号
18秒前
19秒前
华仔应助科研一霸采纳,获得10
19秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819299
求助须知:如何正确求助?哪些是违规求助? 3362381
关于积分的说明 10416801
捐赠科研通 3080563
什么是DOI,文献DOI怎么找? 1694605
邀请新用户注册赠送积分活动 814719
科研通“疑难数据库(出版商)”最低求助积分说明 768403