Achieving High Accuracy in Predicting Blood Flow Volume at the Arteriovenous Fistulas of Hemodialysis Patients by Intelligent Quality Assessment on PPGs

计算机科学 卷积神经网络 光容积图 波形 人工神经网络 血液透析 计算 分类器(UML) 人工智能 算法 计算机视觉 医学 雷达 外科 滤波器(信号处理) 电信
作者
Duc Huy Nguyen,Paul C.-P. Chao,Hong-Han Shuai,Yu‐Wei Fang,Bing Shi Lin
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (6): 5844-5856 被引量:5
标识
DOI:10.1109/jsen.2022.3148415
摘要

A machine learning (ML) algorithm is successfully developed to assess the signal quality of measured photoplethysmography (PPG) waveforms for effective real-time prediction of blood flow volume (BFV). This algorithm is essential to achieve high prediction accuracy of BFV for hemodialysis patients to monitor the quality of their arteriovenous fistulas (AVFs) at home by themselves using a new hand-held device. The algorithm is built on an ML classifier of 1-dimensional convolutional neural network (1D-CNN), calibrated by two groups of PPG waveforms that are pre-identified by experienced experts to 300 qualified and 202 un-qualified PPG waveforms in 6-second windows, as the ones to render accurate BFV predictions and the others to inaccurates, respectively. The qualified ones satisfy at least the deterministic criteria such as adequate signal-to-noise-ratio (SNR), stable/small fluctuations of AC/DC components, and also the presence of secondary bio-features, to ensure minimized influence from mis-positioning, hand movement, pressurization and varied ambient lighting. With the classifier algorithm in hand, together with another fully-connected neural network for estimating BFV, a combined real-time computation algorithm is built, being able to achieve much better accuracy for real-time measurement ubiquitously. In results, using the newly-developed quality-assessment algorithm, the error of predicted BFVs is improved from ±175.577 ml/min to ±122.8259 ml/min significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英姑应助畅快安白采纳,获得10
2秒前
酷波er应助lzzj采纳,获得10
3秒前
到江南散步完成签到,获得积分10
3秒前
5秒前
大模型应助day_on采纳,获得10
5秒前
han完成签到,获得积分10
6秒前
Transition应助wen采纳,获得10
6秒前
7秒前
小马甲应助祥子的骆驼采纳,获得10
8秒前
木盒完成签到,获得积分10
9秒前
雪雪儿发布了新的文献求助10
10秒前
11秒前
郝瑞之完成签到,获得积分20
11秒前
三号市民完成签到,获得积分20
12秒前
时尚的初柔完成签到,获得积分10
12秒前
张一鸣关注了科研通微信公众号
14秒前
15秒前
华仔应助寒雨采纳,获得10
15秒前
15秒前
彭于晏应助day_on采纳,获得10
15秒前
13066751736完成签到 ,获得积分10
16秒前
16秒前
泥泥完成签到 ,获得积分10
16秒前
乐易发布了新的文献求助100
17秒前
18秒前
19秒前
19秒前
敏er完成签到,获得积分10
19秒前
木头完成签到 ,获得积分10
19秒前
zihanwang应助蜗牛先生采纳,获得20
19秒前
岳一完成签到,获得积分10
20秒前
zyc发布了新的文献求助10
20秒前
20秒前
爆辣炒米粉完成签到,获得积分10
20秒前
JamesPei应助不想采纳,获得10
21秒前
KerwinYang发布了新的文献求助10
22秒前
22秒前
故酒发布了新的文献求助100
23秒前
风趣遥完成签到,获得积分10
23秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4044450
求助须知:如何正确求助?哪些是违规求助? 3582296
关于积分的说明 11385969
捐赠科研通 3309288
什么是DOI,文献DOI怎么找? 1821461
邀请新用户注册赠送积分活动 893821
科研通“疑难数据库(出版商)”最低求助积分说明 815822