亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Single-Exposure Optical Measurement of Highly Reflective Surfaces via Deep Sinusoidal Prior for Complex Equipment Production

计算机科学 相(物质) 人工智能 人工神经网络 一般化 信号(编程语言) 数字信号处理 计算机视觉 计算机硬件 数学 物理 数学分析 程序设计语言 量子力学
作者
Jing Zhang,Bin Luo,Fuqian Li,Xingman Niu,Qican Zhang,Yajun Wang,Xiangcheng Chen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (2): 2039-2048 被引量:23
标识
DOI:10.1109/tii.2022.3185660
摘要

Three-dimensional (3-D) measurement of metal surfaces is one of the fundamental tasks for product life-cycle management of complex equipment, which is meaningful but challenging due to its optical characteristics of high reflectivity. To reliably reconstruct 3-D metal surfaces, the commonly used techniques heavily rely on multiple exposures for optimal fusion but do not fit to high-efficiency monitoring. To alleviate this reliance, we propose a novel single-exposure method called deep sinusoidal prior (DSP) for damaged phase recovery of highly reflective surfaces. Specifically, the sinusoidal hypothesis is instilled into an untrained deep neural network (DNN) as two-stream information, in order to bypass the problem of brightness enhancement. Utilizing elaborately designed loss functions, this approach enables us to restore the accurate phase encoding by fitting the DNN to two-stream sinusoidal priors. Experimental results demonstrate that the proposed DSP method has superior performances on damaged phase recovery requiring no training samples. For instance, measuring a standard workpiece, absolute errors of the DSP method have been decreased substantially (81.69% and 59.49%) compared with the direct measurement and achieved similar accuracy (0.0754 versus 0.0744 mm) compared with the reference. Most strikingly, the proposed method, for the first time, demonstrates a new perspective of recovering the reliable phase from a degraded one itself, contributing to the superior generalization capability insensitive to fringe frequencies, imaging settings, and variant scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
19秒前
30秒前
咸金城发布了新的文献求助30
31秒前
36秒前
37秒前
龙卡烧烤店完成签到,获得积分10
43秒前
wackykao完成签到,获得积分10
45秒前
49秒前
慕青应助科研通管家采纳,获得10
49秒前
CipherSage应助科研通管家采纳,获得10
49秒前
longh完成签到,获得积分10
52秒前
充电宝应助橙子采纳,获得10
1分钟前
跳跃的谷雪完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
从容芮完成签到,获得积分0
1分钟前
哈哈哈发布了新的文献求助10
1分钟前
yangjoy发布了新的文献求助10
1分钟前
Michael应助时尚纸鹤采纳,获得20
1分钟前
2分钟前
heqiujing发布了新的文献求助10
2分钟前
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
2分钟前
CodeCraft应助感性的送终采纳,获得10
3分钟前
3分钟前
今后应助舒服的觅夏采纳,获得10
3分钟前
机灵自中完成签到,获得积分10
3分钟前
orixero应助mbxjsy采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
舒服的觅夏完成签到,获得积分10
3分钟前
mbxjsy发布了新的文献求助10
3分钟前
xyliu完成签到,获得积分10
3分钟前
zqq完成签到,获得积分0
3分钟前
4分钟前
Vivianxly完成签到,获得积分20
4分钟前
4分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cleaning Technology in Semiconductor Device Manufacturing: Proceedings of the Sixth International Symposium (Advances in Soil Science) 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837373
求助须知:如何正确求助?哪些是违规求助? 3379544
关于积分的说明 10509816
捐赠科研通 3099190
什么是DOI,文献DOI怎么找? 1706976
邀请新用户注册赠送积分活动 821348
科研通“疑难数据库(出版商)”最低求助积分说明 772552