同宿轨道
混乱的
正弦
混沌(操作系统)
数学
sine-Gordon方程
运动(物理)
数学分析
异斜眶
控制理论(社会学)
经典力学
控制(管理)
物理
计算机科学
非线性系统
几何学
分叉
计算机安全
孤子
量子力学
人工智能
作者
Hang Zheng,Yonghui Xia,Manuel Pinto
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2022-01-01
卷期号:27 (12): 7151-7151
被引量:1
标识
DOI:10.3934/dcdsb.2022037
摘要
<p style='text-indent:20px;'>In this paper, the chaotic motion of the driven and damped double Sine-Gordon equation is analyzed. We detect the homoclinic and heteroclinic chaos by Melnikov method. The corresponding Melnikov functions are derived. A numerical method to estimate the Melnikov integral is given and its effectiveness is illustrated through an example. Numerical simulations of homoclinic and heteroclinic chaos are precisely demonstrated through several examples. Further, we employ a state feedback control method to suppress both chaos simultaneously. Finally, numerical simulations are utilized to prove the validity of control methods.</p>
科研通智能强力驱动
Strongly Powered by AbleSci AI