Prediction of stock price direction using a hybrid GA-XGBoost algorithm with a three-stage feature engineering process

计算机科学 阶段(地层学) 过程(计算) 特征(语言学) 股票价格 人工智能 库存(枪支) 特征工程 算法 模式识别(心理学) 机器学习 数据挖掘 深度学习 系列(地层学) 机械工程 古生物学 语言学 哲学 工程类 生物 操作系统
作者
Kyung Keun Yun,Sang Won Yoon,Daehan Won
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:186: 115716-115716 被引量:202
标识
DOI:10.1016/j.eswa.2021.115716
摘要

• Good performance with less computational cost than deep learning models. • Better interpretability than deep learning models. • Feature set expansion to gain the blessing of dimensionality. • Optimal feature set to relieve the curse of dimensionality. The stock market has performed one of the most important functions in a laissez-faire economic system by gathering people, companies, and flows of money for several centuries. There have been numerous studies on the stock market among researchers to predict stock prices, and a growing number of studies employed machine learning or deep learning techniques on the stock market predictions with the advent of big data and the rapid development of artificial intelligence techniques. However, making accurate predictions of stock price direction remains difficult because stock prices are inherently complex, nonlinear, nonstationary, and sometimes too irrational to be predictable. Despite the wealth of information, previous prediction systems often overlooked key indicators and the importance of feature engineering. This study proposes a hybrid GA-XGBoost prediction system with an enhanced feature engineering process consisting of feature set expansion, data preparation, and optimal feature set selection using the hybrid GA-XGBoost algorithm. This study experimentally verifies the importance of feature engineering process in stock price direction prediction by comparing obtained feature sets to original dataset as well as improving prediction performance to outperform benchmark models. Specifically, the most significant accuracy increment comes from feature expansion that adds 67 technical indicators to the original historical stock price data. This study also produces a parsimonious optimal feature set using the GA-XGBoost algorithm that can achieve the desired performance with substantially fewer features. Consequently, this study empirically proves that a successful prediction performance largely depends on a deliberate combination of feature engineering processes with a baseline learning model to make a good balance and harmony between the curse of dimensionality and the blessing of dimensionality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万松辉发布了新的文献求助10
刚刚
1秒前
Qwe发布了新的文献求助10
1秒前
小邓完成签到,获得积分10
3秒前
八月宁静发布了新的文献求助10
5秒前
哪位完成签到,获得积分10
6秒前
科研通AI6应助mera采纳,获得10
6秒前
mashibeo完成签到,获得积分0
6秒前
完美世界应助fangplus采纳,获得10
6秒前
斯文败类应助GGMJ采纳,获得10
7秒前
7秒前
孤独的凤发布了新的文献求助10
7秒前
胡导家的菜狗完成签到 ,获得积分10
8秒前
华仔应助李杰采纳,获得10
9秒前
桐桐应助Evander采纳,获得10
10秒前
胡亚楠完成签到,获得积分10
10秒前
ysy完成签到,获得积分10
11秒前
JamesPei应助哈哈哈采纳,获得10
12秒前
ZRR发布了新的文献求助10
13秒前
Cy-coolorgan发布了新的文献求助10
13秒前
充电宝应助刻苦念桃采纳,获得10
13秒前
bkagyin应助哈哈采纳,获得10
15秒前
15秒前
赵俊博完成签到,获得积分20
16秒前
爆米花应助昏睡的朝雪采纳,获得10
17秒前
ysy完成签到,获得积分10
17秒前
孤独的凤完成签到,获得积分10
17秒前
Evander完成签到,获得积分10
17秒前
小熊猫完成签到,获得积分10
18秒前
浮游应助77采纳,获得10
19秒前
科研通AI6应助77采纳,获得10
19秒前
20秒前
bkagyin应助zaphkiel采纳,获得10
21秒前
Cy-coolorgan完成签到,获得积分10
21秒前
ZRR完成签到,获得积分10
21秒前
JamesPei应助苦学僧采纳,获得10
22秒前
量子星尘发布了新的文献求助10
23秒前
Qwe完成签到,获得积分10
24秒前
engine完成签到,获得积分10
25秒前
yy完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073