晶体管
电阻随机存取存储器
巨量平行
内容寻址存储器
计算机科学
三元运算
随机存取
材料科学
光电子学
电气工程
并行计算
电压
人工神经网络
工程类
程序设计语言
机器学习
操作系统
作者
Rui Yang,Haitong Li,Kirby K. H. Smithe,Taeho R. Kim,Kye Okabe,Eric Pop,Jonathan A. Fan,H.‐S. Philip Wong
标识
DOI:10.1038/s41928-019-0220-7
摘要
Ternary content-addressable memory (TCAM) is specialized hardware that can perform in-memory search and pattern matching for data-intensive applications. However, achieving TCAMs with high search capacity, good area efficiency and good energy efficiency remains a challenge. Here, we show that two-transistor–two-resistor (2T2R) transition metal dichalcogenide TCAM (TMD-TCAM) cells can be created by integrating single-layer MoS2 transistors with metal-oxide resistive random-access memories (RRAMs). The MoS2 transistors have very low leakage currents and can program the RRAMs with exceptionally robust current control, enabling the parallel search of very large numbers of data bits. These TCAM cells also exhibit remarkably large resistance ratios (R-ratios) of up to 8.5 × 105 between match and mismatch states. This R-ratio is comparable to that of commercial TCAMs using static random-access memories (SRAMs), with the key advantage that our 2T2R TCAMs use far fewer transistors and have zero standby power due to the non-volatility of RRAMs. By integrating two-dimensional MoS2 transistors with metal-oxide resistive random-access memories, two-transistor–two-resistor ternary content-addressable memory cells can be created, which could be used to search large amounts of data in parallel.
科研通智能强力驱动
Strongly Powered by AbleSci AI