Improving model-based compensation method for real-time hybrid simulation considering error of identified model

前馈 控制理论(社会学) 传递函数 补偿(心理学) 时域 计算机科学 频域 补偿方式 工程类 控制工程 控制(管理) 人工智能 数字营销 万维网 电气工程 精神分析 营销投资回报率 计算机视觉 心理学
作者
Zihao Zhou,Ning Li
出处
期刊:Journal of Vibration and Control [SAGE Publishing]
卷期号:27 (21-22): 2523-2535 被引量:8
标识
DOI:10.1177/1077546320961622
摘要

Time delay is a critical and unavoidable problem in real-time hybrid simulation. An accurate and effective compensation method for time delay is necessary for the safety of real-time hybrid simulation and the reliability of test results. Generally, a model-based compensation method can be adopted, which is derived from the identified transfer function by assuming the latter can accurately represent the real plant. However, there must be some differences between the transfer function and the real plant. To facilitate the development of real-time hybrid simulation, we proposed a two-stage feedforward compensation method considering the error between the transfer function identified and the real plant. The compensation strategy proposed in this study was not only based on the transfer function but also introduced an error model as a second-stage compensation into a compensator to realize the synchronization of command and measurement. To verify the efficiency of the proposed method, comparisons in time domain and frequency domain with the feedforward compensator in a model-based feedforward–feedback control method were carried out. Compared with the feedforward compensator, the two-stage method achieved better tracking performance, especially in the high-frequency bandwidth. The test results verified that for a band-limited white noise of 0–30 Hz, the phase lag of the actuation system can be limited to ±5°. Finally, the two-stage method was applied to a real-time hybrid simulation of a two-story frame to illustrate its compensation effect on time delay.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常水卉完成签到,获得积分10
刚刚
刚刚
艾琳克斯完成签到 ,获得积分10
刚刚
赵辉完成签到,获得积分10
刚刚
深情安青应助皮卡丘2023采纳,获得10
刚刚
希望天下0贩的0应助Robe采纳,获得10
1秒前
1秒前
22222发布了新的文献求助10
1秒前
胖大海完成签到,获得积分10
1秒前
时尚语梦完成签到 ,获得积分10
2秒前
優質塑膠发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
4秒前
123444发布了新的文献求助10
5秒前
开朗的骁发布了新的文献求助10
5秒前
zheng发布了新的文献求助10
6秒前
慧慧发布了新的文献求助10
6秒前
lluo完成签到 ,获得积分10
7秒前
南城i完成签到,获得积分10
7秒前
liangmh发布了新的文献求助10
7秒前
ding应助7777采纳,获得10
8秒前
冲冲冲完成签到 ,获得积分10
8秒前
踏雪无痕应助4Peace采纳,获得10
8秒前
cccttt发布了新的文献求助10
9秒前
小青蛙OA发布了新的文献求助10
10秒前
10秒前
肖婷完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
英姑应助咸鱼采纳,获得10
12秒前
跳跃鱼完成签到,获得积分10
12秒前
开朗的骁完成签到,获得积分0
12秒前
科研小迷糊完成签到,获得积分10
13秒前
勤劳滑板发布了新的文献求助10
13秒前
13秒前
阿鑫发布了新的文献求助10
14秒前
草莓奶冻关注了科研通微信公众号
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785297
求助须知:如何正确求助?哪些是违规求助? 3330886
关于积分的说明 10248776
捐赠科研通 3046307
什么是DOI,文献DOI怎么找? 1671979
邀请新用户注册赠送积分活动 800924
科研通“疑难数据库(出版商)”最低求助积分说明 759881