材料科学
离域电子
石墨烯
激发
辐照
等离子体子
离子
分子物理学
原子物理学
密度泛函理论
化学物理
纳米技术
光电子学
物理
化学
计算化学
量子力学
核物理学
作者
Wanzhen He,Chang Chen,Zhiping Xu
出处
期刊:Nanotechnology
[IOP Publishing]
日期:2021-01-14
卷期号:32 (16): 165702-165702
被引量:4
标识
DOI:10.1088/1361-6528/abdb64
摘要
Single-particle irradiation is a typical condition in space applications, which could be detrimental for electronic devices through processes such as single-event upset or latch-up. For functional devices made of few-atom-thick monolayers that are entirely exposed to the environment, the irradiation effects could be manifested through localized or delocalized electronic excitation, in addition to lattice defect creation. In this work, we explore the single-H irradiation effects on bare or coated graphene monolayers. Real-time time-dependent density functional theory-based first-principles calculation results elucidate the evolution of charge densities in the composite system, showing notable charge excitation but negligible charge deposition. A hexagonal boron nitride coating layer does not protect graphene from these processes. Principal component analysis demonstrates the dominance of localized excitation accompanied by nuclear motion, bond distortion and vibration, as well as a minor contribution from delocalized plasmonic excitation. The significance of coupled electron-ion dynamics in modulating the irradiation processes is identified from comparative studies on the spatial and temporal patterns of excitation for unconstrained and constrained lattices. The stopping power or energy deposition is also calculated, quantifying the dissipative nature of charge density excitation. This study offers fundamental understandings of the single-particle irradiation effects on optoelectronic devices constructed from low-dimensional materials, and inspires unconventional techniques to excite the electrons and ions in a controllable way.
科研通智能强力驱动
Strongly Powered by AbleSci AI