Thermally Stable Poly(vinylidene fluoride) for High-Performance Printable Piezoelectric Devices

材料科学 压电 机电耦合系数 聚合物 复合材料 平面的 压电系数 联轴节(管道) 共聚物 氟化物 表征(材料科学) 纳米技术 无机化学 化学 计算机图形学(图像) 计算机科学
作者
Jiajun Lin,Mohammad H. Malakooti,Henry A. Sodano
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:12 (19): 21871-21882 被引量:34
标识
DOI:10.1021/acsami.0c03675
摘要

Piezoelectric polymers, such as poly(vinylidene fluoride) (PVDF) and its copolymers, can achieve large strains and high work density under external electrical fields. These materials are highly desirable in the development of electronic devices and intelligent structures. Here, we demonstrate that dehydrofluorination (DHF) can provide a versatile chemical modification of the PVDF homopolymer that yields thermally stable ferroelectricity. The DHF process significantly increases the fraction of planar chain conformation in the PVDF and results in higher piezoelectric coupling with a wider processing temperature range, compared to traditionally processed PVDF. The efficacy of DHF in promoting planar chain conformation is demonstrated through molecular simulation and further proven by experimental characterization. The induced piezoelectric phases by DHF were able to be preserved through high temperature treatments up to 200 °C. The dehydrofluorinated PVDF exhibits improved electromechanical coupling with a high piezoelectric strain coefficient of d31 = 25.12 ± 1.13 pC/N, which can be further improved to 35.12 ± 0.69 pC/N by common mechanical drawing. This high piezoelectric voltage coefficient leads to an excellent actuation and energy harvesting behavior with a power density of 21.96 mW/cm3 in a flexible undrawn PVDF energy harvester, which is 3.13 times higher than conventionally drawn PVDF. The versatile and scalable method for preparing PVDF polymers with high piezoelectric coupling will enable new manufacturing processes not currently compatible with PVDF homopolymers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
carol完成签到,获得积分10
刚刚
taotao完成签到,获得积分10
3秒前
4秒前
VDC应助爱科研的佳慧采纳,获得30
6秒前
tulip完成签到,获得积分10
6秒前
所所应助眯眯眼的朋友采纳,获得10
9秒前
9秒前
11秒前
树袋熊完成签到,获得积分10
12秒前
13秒前
天明发布了新的文献求助30
14秒前
YP_024完成签到,获得积分10
19秒前
20秒前
郭n完成签到 ,获得积分10
22秒前
XRWei完成签到 ,获得积分10
23秒前
PG完成签到 ,获得积分10
23秒前
科研通AI5应助清晨采纳,获得30
23秒前
24秒前
赎罪完成签到 ,获得积分10
26秒前
n0rthstar完成签到,获得积分10
29秒前
35秒前
科研小白完成签到,获得积分10
36秒前
helloworld完成签到,获得积分10
37秒前
专注雨珍完成签到,获得积分10
37秒前
哈哈发布了新的文献求助10
38秒前
64658完成签到,获得积分10
41秒前
42秒前
solidcon发布了新的文献求助10
46秒前
47秒前
rui完成签到,获得积分10
47秒前
51秒前
52秒前
solidcon完成签到,获得积分20
53秒前
58秒前
1分钟前
过过过发布了新的文献求助10
1分钟前
1分钟前
科研通AI5应助自由采纳,获得10
1分钟前
1分钟前
可爱的函函应助solidcon采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777977
求助须知:如何正确求助?哪些是违规求助? 3323559
关于积分的说明 10214983
捐赠科研通 3038761
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798276
科研通“疑难数据库(出版商)”最低求助积分说明 758315