鲜味
微电极
电子舌
品味
多电极阵列
化学
体外
纳米技术
生物化学
材料科学
电极
物理化学
作者
Xinwei Wei,Chunlian Qin,Chenlei Gu,Chuanjiang He,Qunchen Yuan,Mengxue Liu,Liujing Zhuang,Hao Wan,Ping Wang
标识
DOI:10.1016/j.bios.2019.111673
摘要
Electronic tongues (ETs) have been developed and widely used in food, beverage and pharmaceutical fields, but limited in sensitivity and specificity. In recent years, bioelectronic tongues (BioETs) integrating biological materials and various types of transducers are proposed to bridge the gap between ET system and biological taste. In this work, a bionic in vitro cell-based BioET is developed for bitter and umami detection, utilizing rat cardiomyocytes as a primary taste sensing element and microelectrode arrays (MEAs) as a secondary transducer for the first time. The primary cardiomyocytes of Sprague Dawley (SD) rats, which endogenously express bitter and umami taste receptors, were cultured on MEAs. Cells attached and grew well on the sensor surface, and syncytium was formed for potential conduction and mechanical beating, indicating the good biocompatibility of surface coating. The specificity of this BioET was verified by testing different tastants and bitter compounds. The results show that the BioET responds to bitter and umami compounds specifically among five basic tastants. For bitter recognition, only those can activate receptors in cardiomyocytes can be recognized by the BioET, and different bitter substances could be discriminated by principal component analysis (PCA). Moreover, the specific detections of two bitters (Denatonium Benzoate, Diphenidol) and an umami compound (Monosodium Glutamate) were realized with a detection limit of 10-6 M. The cardiomyocytes-based BioET proposed in this work provides a new approach for the construction of BioETs and has promising applications in taste detection and pharmaceutical study.
科研通智能强力驱动
Strongly Powered by AbleSci AI