亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94

参数化复杂度 力场(虚构) 范围(计算机科学) 特征(语言学) 集合(抽象数据类型) 多样性(控制论) 领域(数学) 计算化学 分子动力学 统计物理学 计算机科学 化学 算法 数学 物理 纯数学 人工智能 哲学 程序设计语言 语言学
作者
Thomas A. Halgren
出处
期刊:Journal of Computational Chemistry [Wiley]
卷期号:17 (5-6): 490-519 被引量:4203
标识
DOI:10.1002/(sici)1096-987x(199604)17:5/6<490::aid-jcc1>3.0.co;2-p
摘要

Journal of Computational ChemistryVolume 17, Issue 5-6 p. 490-519 Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 Thomas A. Halgren, Corresponding Author Thomas A. Halgren Department of Molecular Design and Diversity, Merck Research Laboratories, Rahway, New Jersey 07065Department of Molecular Design and Diversity, Merck Research Laboratories, Rahway, New Jersey 07065Search for more papers by this author Thomas A. Halgren, Corresponding Author Thomas A. Halgren Department of Molecular Design and Diversity, Merck Research Laboratories, Rahway, New Jersey 07065Department of Molecular Design and Diversity, Merck Research Laboratories, Rahway, New Jersey 07065Search for more papers by this author First published: April 1996 https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-PCitations: 1,396AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract This article introduces MMFF94, the initial published version of the Merck molecular force field (MMFF). It describes the objectives set for MMFF, the form it takes, and the range of systems to which it applies. This study also outlines the methodology employed in parameterizing MMFF94 and summarizes its performance in reproducing computational and experimental data. Though similar to MM3 in some respects, MMFF94 differs in ways intended to facilitate application to condensed-phase processes in molecular-dynamics simulations. Indeed, MMFF94 seeks to achieve MM3-like accuracy for small molecules in a combined “organic/protein” force field that is equally applicable to proteins and other systems of biological significance. A second distinguishing feature is that the core portion of MMFF94 has primarily been derived from high-quality computational data—ca. 500 molecular structures optimized at the HF/6-31G* level, 475 structures optimized at the MP2/6-31G* level, 380 MP2/6-31G* structures evaluated at a defined approximation to the MP4SDQ/TZP level, and 1450 structures partly derived from MP2/6-31G* geometries and evaluated at the MP2/TZP level. A third distinguishing feature is that MMFF94 has been parameterized for a wide variety of chemical systems of interest to organic and medicial chemists, including many that feature frequently occurring combinations of functional groups for which little, if any, useful experimental data are available. The methodology used in parameterizing MMFF94 represents a fourth distinguishing feature. Rather than using the common “functional group” approach, nearly all MMFF parameters have been determined in a mutually consistent fashion from the full set of available computational data. MMFF94 reproduces the computational data used in its parameterization very well. In addition, MMFF94 reproduces experimental bond lengths (0.014 Å root mean square [rms]), bond angles (1.2° rms), vibrational frequencies (61 cm−1 rms), conformational energies (0.38 kcal/mol/rms), and rotational barriers (0.39 kcal/mol rms) very nearly as well as does MM3 for comparable systems. MMFF94 also describes intermolecular interactions in hydrogen-bonded systems in a way that closely parallels that given by the highly regarded OPLS force field. © 1996 John Wiley & Sons, Inc. Supporting Information This article includes Supplementary Material available from the authors upon request or via the Internet at ftp.wiley.com/public/journals/jcc/suppmat/17/490 Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1 J. B. Hendrickson, J. Am. Chem. Soc., 83, 4537–4547 (1961). For an even earlier reference, see: F. H. Westheimer, in Steric Effect in Organic Chemistry, M. S. Newman, Ed., Wiley, New York, 1956, Chapter 12. 2 D. H. Wertz and N. L. Allinger, Tetrahedron, 30, 1579 (1974). 3(a) N. L. Allinger, J. Am. Chem. Soc., 89, 8127 (1977); (b) U. Burkert and N. L. Allinger, Molecular Mechanics; American Chemical Society, Washington, DC, 1982; (c) N. L. Allinger and Y. Yuh, QCPE, 12, 395 (1980). 4 N. L. Allinger, Y. H. Yuh, and J-H. Lii, J. Am. Chem. Soc., 111, 8551–8566 (1989). See also: N. L. Allinger and L. Yan, J. Am. Chem. Soc., 115, 11918–11925 (1993), and references therein. 5 W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc., 117, 5179–5197 (1995); S. J. Weiner, P. A. Kollman, D. T. Nguyen, and D. A. Case, J. Comput. Chem., 7, 230–252 (1986); S. J. Weiner, P. A. Kollman, D. T. Nguyen, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, S. Profeta Jr., and P. Weiner, J. Am. Chem. Soc., 106, 765–784 (1984). 6(a) W. L. Jorgensen and J. Tirado-Rives, J. Am. Chem. Soc., 110, 1657–1666 (1988), and references therein; (b) H. A. Carlson, T. B. Nguyen, M. Orozco, and W. J. Jorgensen, J. Comput. Chem., 14, 1240–1249 (1993), and references therein. 7 B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, J. Comput. Chem., 4, 187–217 (1983). 8 S. Lifson, A. T. Hagler, and P. Dauber, J. Am. Chem. Soc., 101, 5111–5121 (1979), and references therein. 9 F. M. Momany and R. Rone, J. Comput. Chem., 13, 888–900 (1992). 10 S. L. Mayo, B. D. Olafson, and W. A. Goddard III, J. Phys. Chem., 94, 8897 (1990). 11 A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard III, and W. M. Skiff, J. Am. Chem. Soc., 114, 10024–10035 (1992), and references therein. 12 A. Vedani and D. W. Huhta, J. Am. Chem. Soc., 112, 4759–4767 (1990). 13 V. S. Allured, C. M. Kelly, and C. R. Landis, J. Am. Chem. Soc., 113, 1 (1991). 14 D. M. Root, C. R. Landis, and T. Cleveland, J. Am. Chem. Soc., 115, 4201–4209 (1993). 15 J. R. Maple, U. Dinur, and A. T. Hagler, Proc. Natl. Acad. Sci. USA, 85, 5350–5354 (1988). A. T. Hagler, J. R. Maple, T. S. Thacher, G. B. Fitzgerald, and U. Dinur, In Computer Simulation of Biomolecular Systems, W. F. van Gunsteren and P. K. Weiner, Eds., ESCOM, Leiden, 1989, pp. 149–167. U. Dinur and A. T. Hagler, in Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, Eds., VCH Publishers, New York, 1991, Vol. 2, pp. 99–163. See also: J. Palca, Nature, 322, 586 (1986). 16(a) J. R. Maple, M.-J. Hwang, T. P. Stockfish, U. Dinur, M. Waldman, C. S. Ewig, and A. T. Hagler, J. Comput. Chem., 15, 161–182 (1994); M.-J. Hwang, T. P. Stockfish, and A. T. Hagler, J. Am. Chem. Soc., 116, 2515–2525 (1994). 17 N. L. Allinger, K. Chen, and J.-H. Lii, J. Comput. Chem. (this issue). 18(a) W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986, Chapter 6; (b) D. J. DeFrees, B. A. Levi, S. K. Pollack, W. J. Hehre, J. S. Binkley, and J. A. Pople, J. Am. Chem. Soc., 101, 4085–4089 (1979). 19 For a recent example of a significant experimental error which was corrected on the basis of information from ab initio calculations, including calculations at the MP2/6-31G* level used in the present work, see: B. J. Smith and L. Radom, J. Am. Chem. Soc., 112, 7525–7528 (1990). 20(a) See, for example: U. Dinur and A. T. Hagler, J. Chem. Phys., 91, 2949–2958 (1989); (b) U. Dinur and A. T. Hagler, J. Chem. Phys., 91, 2959–2970 (1989); (c) U. Dinur, J. Comput. Chem., 12, 91–105 (1991); (d) U. Dinur, J. Comput. Chem., 12, 469–486 (1991); (e) U. Dinur, J. Phys. Chem., 94, 5669–5671 (1990). 21(a) See, for example: G. Corongiu, M. Migliore, and E. Clementi, J. Chem. Phys., 90, 4629 (1989); (b) L. X. Dang, J. E. Rice, J. Caldwell, and P. A. Kollman, J. Am. Chem. Soc., 113, 2481–2486 (1991), and references therein; (c) M. Sprik, J. Phys. Chem., 95, 2283–2291 (1991), and references therein. (d) S.-B. Zhu, S. Yao, J.-B. Zhu, S. Singh, and G. W. Robinson, J. Phys. Chem., 95, 6211–6217 (1991); (e) S. W. Rick, S. J. Stuart, and B. J. Berne, J. Chem. Phys., 101, 6141–6156 (1994); (f) D. N. Bernardo, Y. Ding, K. Krough-Jespersen, and R. M. Levy, J. Phys. Chem., 98, 4180–4187 (1994); (g) For an early implementation of induced-dipole effects, see also L. Dosen-Micovic, D. Jeremic, and N. L. Allinger, J. Am. Chem. Soc., 105, 1716, 1723 (1983). 22 S. Dasgupta and W. A. Goddard III, J. Chem. Phys., 90, 7207–7215 (1989). 23 The MMFF94 parameters (Appendix B, Supplementary Material) are available in computer-readable form (see footnote * on first page of this article). 24 Part II: T. A. Halgren, J. Comput. Chem. (this issue). 25 Part III: T. A. Halgren, J. Comput. Chem. (this issue). 26 Part IV: T. A. Halgren and R. B. Nachbar, J. Comput. Chem. (this issue). 27 Part V: T. A. Halgren, J. Comput. Chem. (this issue). 28 This collaboration involved Prof. Martin Karplus (Harvard University) and Dr. Ryszard Czerminski and others of Molecular Simulations, Inc. (San Diego, CA). Currently, a version of CHARMm that supports the earlier and less widely parameterized MMFF93 force field (which lacks, e.g., the ability to recognize a number of the ionic species parameterized in ref. 27; see also refs. 25 and 26) is available from MSI. However, while the local Merck code for CHARMm employs MMFF94, arrangements for including MMFF94 in the distributed MSI version have not yet been concluded. 29 P. S. Shenkin and T. A. Halgren (work in progress). The MacroModel program suite and its BatchMin module, developed in the laboratories of Professor Clark Still, are available from Columbia University (New York, NY). 30 OPTIMOL has been developed and maintained by the author, but is based in part on computer code adapted from a public domain version of MM2 or written by Drs. R. B. Nachbar, B. L. Bush, G. M. Smith, E. F. Fluder Jr., and J. D. Andose of the Merck Research Laboratories. 31 Distribution of OPTIMOL by the Quantum Chemistry Program Exchange (Indiana University) would permit free usage of the program but would prohibit its commercialization. 32 T. A. Halgren and R. B. Nachbar (work in progress). 33 The Merck Index, 11th ed., S. Budavari, Ed., Merck & Co., Rahway, NJ, 1989. 34 Fine Chemicals Directory Handbook, Fraser Williams (Scientific Systems), London, 1983–1985. Connection tables distributed by Molecular Design Ltd., Hayward, CA. 35 PROBE is a computer program used to derive molecular-mechanics parameters in least-squares fits to data obtained from ab initio calculations. PROBE was created for the Biosym Consortium on Potential Energy Functions by Biosym Technologies, Inc. (now Molecular Simulations, Inc.); cf. refs 15 and 16a. The derivation of MMFF94 used a 1991 version of PROBE. 36 See, for example, G. C. Lie and E. Clementi, Phys. Rev., 33A, 2679 (1986). 37 H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, and J. Hermans, In Intermolecular Forces, B. Pullman, Ed., Reidel, Dordrecht, Holland, 1981, pp. 331–342. 38 B. M. Pettit, in Computer Simulation of Biomolecular Systems, W. F. van Gunsteren and P. K. Weiner, Eds., ESCOM, Leiden, 1989, pp. 94–100. 39 T. A. Halgren, J. Am. Chem. Soc., 114, 7827–7843 (1992). 40 W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986, Chapter 4. The 6-31G* basis sets also known as 6-31G(d). 41 A. D. MacKerell Jr. and M. Karplus, J. Phys. Chem., 95, 10559–10560 (1991); A. D. MacKerell Jr., J. Wiórkiewicz-Kuczera, and M. Karplus, J. Am. Chem. Soc. (in press). 42 M. J. Frisch, J. E. Del Bene, J. S. Binkley, and H. F. Schaeffer III, J. Chem. Phys., 84, 2279–2289 (1986). 43 T. A. Halgren, J. Am. Chem. Soc., 112, 4710–4723 (1990). 44 M. Orozco and F. J. Luque, J. Comput. Chem., 14, 881–894 (1993). 45 E. B. Wilson Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations, Dover, New York, 1955, Chapter 4. 46 M. K. Holloway, J. M. Wai, T. A. Halgren, P. M. D. Fitzgerald, J. P. Vacca, B. D. Dorsey, R. B. Levin, W. J. Thompson, L. J. Chen, S. J. deSolms, N. Gaffin, A. K. Ghosh, E. A. Giuliani, S. L. Graham, J. P. Guare, R. W. Hungate, T. A. Lyle, W. M. Sanders, T. J. Tucker, M. Wiggins, C. M. Wiscount, O. W. Woltersdorf, S. D. Young, P. L. Darke, and J. A. Zugay, J. Med. Chem., 38, 305–317 (1995). 47 Note that this truncation does not lead to a “cubic-bend” catastrophe because the range of the angle is limited to 180° and the cubic-bend constant is relatively small. 48 See, for example, the “vdW and hydrogen bonding” parameters listed in Table I of: J.-H. Lii and N. L. Allinger, J. Comput. Chem., 12, 186–199 (1991). 49 M. Waldman and A. T. Hagler, J. Comput. Chem., 14, 1077–1084 (1993). 50 Most of the ab initio calculations used in parameterizing MMFF were performed on the Merck Research Laboratories Cray YPM8i/4-128 supercomputer. 51 M. J. Frisch, M. Head-Gordon, H. B. Schlegel, K. Raghavachari, J. S. Binkley, C. Gonzalez, D. J. Defrees, D. J. Fox, R. A. Whiteside, R. Seeger, C. F. Melius, J. Baker, R. L. Martin, L. R. Kahn, J. J. P. Stewart, E. M. Fluder, S. Topiol, and J. A. Pople, Gaussian 88, Gaussian, Inc., Pittsburgh, PA, 1988, as modified at Merck for improved I/O performance by E. M. Fluder. 52 M. J. Frisch, M. Head-Gordon, G. W. Trucks, J. B. Foresman, H. B. Schlegel, K. Raghavachari, M. Robb, J. S. Binkley, C. Gonzalez, D. J. Defrees, D. J. Fox, R. A. Whiteside, R. Seeger, C. F. Melius, J. Baker, R. L. Martin, L. R. Kahn, J. J. P. Stewart, S. Topiol, and J. A. Pople, GAUSSIAN 90 (Revision J), Gaussian, Inc., Pittsburgh, PA, 1990. 53 M. L. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople, GAUSSIAN 92 (Revision C), Gaussian, Inc., Pittsburgh, PA, 1992. 54 Calculations at the MP2/6-31G* /MP2/6-31G* level are used as the basis of structure determination in the high-level composite G1 and G2 methods developed by Pople and coworkers; cf. L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. Phys., 94, 7221–7230 (1991), and references therein. Comparisons to experiment for a number of the molecules employed in the derivation of MMFF94 are summarized in A. St.-Amant, W. D. Cornell, T. A. Halgren, and P. A. Kollman, J. Comput. Chem., 16, 1483–1506 (1995). 55 See, for example, G. Chalasinski, M. M. Szczesniak, P. Cieplak, and S. Scheiner, J. Chem. Phys., 94, 2873–2883 (1991), and references therein. 56 The ESP-fit calculations were carried out with a version of Gaussian 88 to which Dr. M. D. Miller (Merck Research Laboratories) had interfaced PDM88 (D. E. Williams, QCPE, Program No. 568, 1988). 57 In these MMFF optimizations, weak penalty-function restraints were applied to the torsion angles to insure that comparable MMFF and ab initio conformations were being compared (cf. ref. 26). 58 TORFIT is a versatile program developed at the Merck Research Laboratories which derives torsional parameters via least-squares fits to relative conformational energies (cf. ref. 26). 59 The procedure used is not strictly “mathematically” self-consistent, however, because formal couplings between parameters belonging to different classes (e.g., between reference values and force constants for angles at trigonal centers) have not been addressed. Further iterations would probably cause a slow drift away from the parameter values reported in this work. We view the parameters as being “physically” self-consistent, however, in the sense that such further iterations would not materially improve the fit to the computational data. 60 The cited rms deviations in dipole directions are weighted rms deviations constructed to avoid overemphasizing large errors in directions for dipole moments of small magnitude (cf. ref. 24). 61 We should note that MM2X actually uses the Allinger (MM2/MM3) definition for out-of-plane angles. To clarify the comparison to MMFF, however, we have used the Wilson definition in analyzing the MM2X-optimized geometries. The Allinger angles typically are about three times smaller in magnitude. 62 See, for example: M. W. Wong and K. B. Wiberg, J. Phys. Chem., 96, 668–671 (1992). 63 The first rms value is much lower for MM2X because some high-energy structures in the transition state region for CN amide bond rotation in N-methylformamine were poorly treated by MM2X and had to be removed from the test set (cf. ref. 26). 64 For structures, see T. Head-Gordon, M. Head-Gordon, M. J. Frisch, C. L. Brooks III, and J. A. Pople, J. Am. Chem. Soc., 113, 5989–5997 (1991). 65 W. L. Jorgensen, J. Chandrasekhar and J. D. Madura, J. Chem. Phys., 79, 926–935 (1983). 66(a) B. L. Bush, J. L. Banks, R. Czerminski, and T. A. Halgren (work in progress), using a local version of CHARMm into which MMFF94 has been integrated; (b) T. A. Halgren, S.-S. So, and M. Karplus (work in progress). 67 As an example, we might at some point wish to define different bond-charge increments for CO groups in amides, esters, ketones, etc., for which differing symbolic atom types but common numeric atom types currently are assigned. The equivalence procedure provides a convenient way to do so without requiring that atom types and parameters describing common bond, angle, torsion, and other interactions simultaneously be modified. 68 For bending of the i–j–k angle, a five-stage process based in the level combinations 1–1–1, 2–2–2, 3–2–3, 4–2–4, and 5–2–5 is used. For i–j–k–l torsion interactions, a five-stage process based on level combinations 1–1–1–1, 2–2–2–2, 3–2–2–5, 5–2–2–3, and 5–2–2–5 is used, where stages 3 and 4 correspond to “half-default” or “half-wild-card” entries. For out-of-plane bending ijk; l, where j is the central atom [cf. eq. (5)], the five-stage protocol 1–1–1; 1, 2–2–2; 2, 3–2–3; 3, 4–2–4; 4, 5–2–5; 5 is used. The final stage provides wild-card defaults for all except the central atom. 69 N. L. Allinger and M. J. Hickey, Tetrahedron, 28, 2157–2161 (1972). Although not specifically referenced, the results of this work were used in developing a force field for carbonyl compounds: N. L. Allinger, M. T. Trible, and M. A. Miller, Tetrahedron, 28, 1173–1190 (1972) (N. L. Allinger, private communication). 70 W. F. van Gunsteren, In Computer Simulation of Biomolecular Systems, W. F. van Gunsteren and P. K. Weiner, Eds., ESCOM, Leiden, 1989, pp. 27–59. 71 M. Mezei and J. J. Dannenberg, J. Phys. Chem., 92, 5860–5861 (1988). 72 Appendix A is available in Supplementary Material (see footnote * on the first page of this article). Citing Literature Volume17, Issue5-6April 1996Pages 490-519 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiongyh10完成签到,获得积分10
8秒前
华仔应助科研通管家采纳,获得10
13秒前
李健应助Wellbeing采纳,获得10
30秒前
55秒前
59秒前
1分钟前
1分钟前
王者归来发布了新的文献求助10
1分钟前
勤奋茗发布了新的文献求助10
1分钟前
酷酷的王完成签到 ,获得积分10
1分钟前
潇潇完成签到 ,获得积分10
1分钟前
1分钟前
雷锋完成签到 ,获得积分10
2分钟前
阳佟万言发布了新的文献求助10
2分钟前
我是老大应助琳琅采纳,获得10
2分钟前
2分钟前
苏鱼完成签到 ,获得积分10
2分钟前
3分钟前
天天快乐应助王者归来采纳,获得10
3分钟前
琳琅发布了新的文献求助10
3分钟前
鱼鱼鱼发布了新的文献求助10
3分钟前
3分钟前
B612小行星完成签到 ,获得积分10
3分钟前
王者归来发布了新的文献求助10
3分钟前
大模型应助小时采纳,获得20
3分钟前
su完成签到 ,获得积分10
3分钟前
王者归来完成签到,获得积分20
3分钟前
3分钟前
Wellbeing发布了新的文献求助10
3分钟前
Y20完成签到 ,获得积分10
3分钟前
3分钟前
yanzzz发布了新的文献求助10
4分钟前
ding应助yanzzz采纳,获得10
4分钟前
归海梦岚完成签到,获得积分0
4分钟前
Wellbeing完成签到,获得积分10
4分钟前
Jasper应助鱼鱼鱼采纳,获得10
4分钟前
4分钟前
鱼鱼鱼发布了新的文献求助10
4分钟前
caca完成签到,获得积分10
4分钟前
嗯en完成签到 ,获得积分10
4分钟前
高分求助中
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 1000
Corrosion and Oxygen Control 600
Yaws' Handbook of Antoine coefficients for vapor pressure 500
Python Programming for Linguistics and Digital Humanities: Applications for Text-Focused Fields 500
Heterocyclic Stilbene and Bibenzyl Derivatives in Liverworts: Distribution, Structures, Total Synthesis and Biological Activity 500
重庆市新能源汽车产业大数据招商指南(两链两图两池两库两平台两清单两报告) 400
Division and square root. Digit-recurrence algorithms and implementations 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2550601
求助须知:如何正确求助?哪些是违规求助? 2177554
关于积分的说明 5609374
捐赠科研通 1898350
什么是DOI,文献DOI怎么找? 947811
版权声明 565490
科研通“疑难数据库(出版商)”最低求助积分说明 504141