Multiple object detection and tracking from drone videos based on GM-YOLO and multi-tracker

计算机视觉 人工智能 跟踪(教育) 目标检测 计算机科学 BitTorrent跟踪器 对象(语法) 特征(语言学) 视频跟踪 运动模糊 相似性(几何) 模式识别(心理学) 眼动 图像(数学) 心理学 哲学 语言学 教育学
作者
Yubin Yuan,Yiquan Wu,Langyue Zhao,Huixian Chen,Yao Zhang
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:143: 104951-104951 被引量:14
标识
DOI:10.1016/j.imavis.2024.104951
摘要

Multiple object tracking in drone videos is a vital vision task with broad application prospects, but most trackers use spatial or appearance clues alone to correlate detections. Our proposed Multi-Tracker uses a novel similarity measure that combines position and appearance information. We designed the GM-YOLO network to provide high-quality detections as input to Multi-Tracker. Add a Coordinate Attention mechanism and a weighted Bidirectional Feature Pyramid Network structure to the Backbone, each feature point's effective receptive field is modeled as a Gaussian distribution. To accurately obtain the motion and appearance features of the object, the adaptive noise covariance Kalman filter is used to get the position information, MB-OSNet network is designed to use global features to learn contour information to retrieve images from a wider field of view while incorporating Part-Level elements that contain more fine-grained data. Finally, the motion and appearance features are jointly compared to realize multi object tracking. The performance of the GM-YOLO object detector and the Multi-Tracker was verified on the VisDrone MOT and UAVDT datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
北北北应助科研通管家采纳,获得10
1秒前
传奇3应助124578采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得30
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
2秒前
星辰大海应助科研通管家采纳,获得30
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
2秒前
慕青应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
发一篇sci完成签到 ,获得积分10
4秒前
多多完成签到,获得积分20
4秒前
CodeCraft应助sy采纳,获得10
5秒前
美好斓发布了新的文献求助10
5秒前
没有昵称发布了新的文献求助10
5秒前
5秒前
菜饼哥发布了新的文献求助10
5秒前
6秒前
科研通AI5应助Zoe采纳,获得10
7秒前
情怀应助李7采纳,获得10
8秒前
8秒前
10秒前
10秒前
124578完成签到,获得积分10
12秒前
12秒前
13秒前
科研通AI6应助姜勇采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4490341
求助须知:如何正确求助?哪些是违规求助? 3944220
关于积分的说明 12231032
捐赠科研通 3601234
什么是DOI,文献DOI怎么找? 1980521
邀请新用户注册赠送积分活动 1017387
科研通“疑难数据库(出版商)”最低求助积分说明 910382