Weakly-Supervised Video Anomaly Detection With Snippet Anomalous Attention

代码段 计算机科学 异常检测 水准点(测量) 判别式 异常(物理) 人工智能 边距(机器学习) 光学(聚焦) 机器学习 模式识别(心理学) 情报检索 物理 大地测量学 凝聚态物理 光学 地理
作者
Yidan Fan,Yongxin Yu,Wenhuan Lu,Yahong Han
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (7): 5480-5492 被引量:7
标识
DOI:10.1109/tcsvt.2024.3350084
摘要

With a focus on abnormal events contained within untrimmed videos, there is increasing interest among researchers in video anomaly detection. Among different video anomaly detection scenarios, weakly-supervised video anomaly detection poses a significant challenge as it lacks frame-wise labels during the training stage, only relying on video-level labels as coarse supervision. Previous methods have made attempts to either learn discriminative features in an end-to-end manner or employ a two-stage self-training strategy to generate snippet-level pseudo labels. However, both approaches have certain limitations. The former tends to overlook informative features at the snippet level, while the latter can be susceptible to noises. In this paper, we propose an Anomalous Attention mechanism for weakly-supervised anomaly detection to tackle the aforementioned problems. Our approach takes into account snippet-level encoded features without the supervision of pseudo labels. Specifically, our approach first generates snippet-level anomalous attention and then feeds it together with original anomaly scores into a Multi-branch Supervision Module. The module learns different areas of the video, including areas that are challenging to detect, and also assists the attention optimization. Experiments on benchmark datasets XD-Violence and UCF-Crime verify the effectiveness of our method. Besides, thanks to the proposed snippet-level attention, we obtain a more precise anomaly localization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
Ava应助小小莫采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
ff完成签到,获得积分10
1秒前
ZhouYW应助科研通管家采纳,获得10
1秒前
1秒前
Ava应助震震采纳,获得10
1秒前
1秒前
ZhouYW应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得30
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
周宇飞发布了新的文献求助10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
Owen应助樊璐采纳,获得10
3秒前
啾v咪完成签到,获得积分10
4秒前
5秒前
爆米花应助Math4396采纳,获得10
8秒前
12秒前
科研通AI5应助zzznznnn采纳,获得10
13秒前
15秒前
15秒前
和谐幻柏发布了新的文献求助10
16秒前
16秒前
orixero应助Siris采纳,获得30
16秒前
科研通AI5应助清枫采纳,获得10
17秒前
Akim应助葫芦娃采纳,获得30
17秒前
sky发布了新的文献求助10
17秒前
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797758
求助须知:如何正确求助?哪些是违规求助? 3343236
关于积分的说明 10315046
捐赠科研通 3059985
什么是DOI,文献DOI怎么找? 1679200
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150