亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MS-TCNet: An effective Transformer–CNN combined network using multi-scale feature learning for 3D medical image segmentation

计算机科学 人工智能 卷积神经网络 尺度空间分割 分割 特征(语言学) 基于分割的对象分类 稳健性(进化) 编码器 模式识别(心理学) 深度学习 棱锥(几何) 特征学习 图像分割 计算机视觉 数学 操作系统 基因 几何学 化学 生物化学 语言学 哲学
作者
Yu Ao,Weili Shi,Bai Ji,Yu Miao,Wei He,Zhengang Jiang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 108057-108057 被引量:25
标识
DOI:10.1016/j.compbiomed.2024.108057
摘要

Medical image segmentation is a fundamental research problem in the field of medical image processing. Recently, the Transformer have achieved highly competitive performance in computer vision. Therefore, many methods combining Transformer with convolutional neural networks (CNNs) have emerged for segmenting medical images. However, these methods cannot effectively capture the multi-scale features in medical images, even though texture and contextual information embedded in the multi-scale features are extremely beneficial for segmentation. To alleviate this limitation, we propose a novel Transformer–CNN combined network using multi-scale feature learning for three-dimensional (3D) medical image segmentation, which is called MS-TCNet. The proposed model utilizes a shunted Transformer and CNN to construct an encoder and pyramid decoder, allowing six different scale levels of feature learning. It captures multi-scale features with refinement at each scale level. Additionally, we propose a novel lightweight multi-scale feature fusion (MSFF) module that can fully fuse the different-scale semantic features generated by the pyramid decoder for each segmentation class, resulting in a more accurate segmentation output. We conducted experiments on three widely used 3D medical image segmentation datasets. The experimental results indicated that our method outperformed state-of-the-art medical image segmentation methods, suggesting its effectiveness, robustness, and superiority. Meanwhile, our model has a smaller number of parameters and lower computational complexity than conventional 3D segmentation networks. The results confirmed that the model is capable of effective multi-scale feature learning and that the learned multi-scale features are useful for improving segmentation performance. We open-sourced our code, which can be found at https://github.com/AustinYuAo/MS-TCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
peggy完成签到,获得积分10
3秒前
热情的橙汁完成签到,获得积分10
15秒前
17秒前
20秒前
思源应助andrele采纳,获得10
21秒前
23秒前
望远Arena发布了新的文献求助10
30秒前
38秒前
海盗船长发布了新的文献求助10
52秒前
阿言完成签到 ,获得积分10
54秒前
雅典的宠儿完成签到 ,获得积分10
57秒前
青堤完成签到,获得积分20
1分钟前
刘不动完成签到,获得积分10
1分钟前
1分钟前
JamesPei应助冷静新烟采纳,获得10
1分钟前
SciGPT应助zilhua采纳,获得30
1分钟前
七安完成签到,获得积分20
1分钟前
天选小牛马完成签到 ,获得积分10
1分钟前
1分钟前
康康XY完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
zilhua发布了新的文献求助30
1分钟前
科研通AI6应助海盗船长采纳,获得10
1分钟前
小白发布了新的文献求助10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
郭京京完成签到 ,获得积分10
1分钟前
zilhua完成签到,获得积分10
2分钟前
Kamalika完成签到,获得积分10
2分钟前
Criminology34应助小左采纳,获得10
2分钟前
充电宝应助望远Arena采纳,获得10
2分钟前
matrixu完成签到,获得积分10
2分钟前
Joe关注了科研通微信公众号
2分钟前
Jasper应助ddfighting采纳,获得10
2分钟前
桐桐应助kyle采纳,获得10
2分钟前
2分钟前
ddfighting发布了新的文献求助10
2分钟前
小白完成签到,获得积分10
2分钟前
望远Arena完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4694344
求助须知:如何正确求助?哪些是违规求助? 4064928
关于积分的说明 12568291
捐赠科研通 3763605
什么是DOI,文献DOI怎么找? 2078569
邀请新用户注册赠送积分活动 1106891
科研通“疑难数据库(出版商)”最低求助积分说明 985116