MS-TCNet: An effective Transformer–CNN combined network using multi-scale feature learning for 3D medical image segmentation

计算机科学 人工智能 卷积神经网络 尺度空间分割 分割 特征(语言学) 基于分割的对象分类 稳健性(进化) 编码器 模式识别(心理学) 深度学习 棱锥(几何) 特征学习 图像分割 计算机视觉 数学 操作系统 基因 几何学 化学 生物化学 语言学 哲学
作者
Yu Ao,Weili Shi,Bai Ji,Yu Miao,Wei He,Zhengang Jiang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 108057-108057 被引量:14
标识
DOI:10.1016/j.compbiomed.2024.108057
摘要

Medical image segmentation is a fundamental research problem in the field of medical image processing. Recently, the Transformer have achieved highly competitive performance in computer vision. Therefore, many methods combining Transformer with convolutional neural networks (CNNs) have emerged for segmenting medical images. However, these methods cannot effectively capture the multi-scale features in medical images, even though texture and contextual information embedded in the multi-scale features are extremely beneficial for segmentation. To alleviate this limitation, we propose a novel Transformer–CNN combined network using multi-scale feature learning for three-dimensional (3D) medical image segmentation, which is called MS-TCNet. The proposed model utilizes a shunted Transformer and CNN to construct an encoder and pyramid decoder, allowing six different scale levels of feature learning. It captures multi-scale features with refinement at each scale level. Additionally, we propose a novel lightweight multi-scale feature fusion (MSFF) module that can fully fuse the different-scale semantic features generated by the pyramid decoder for each segmentation class, resulting in a more accurate segmentation output. We conducted experiments on three widely used 3D medical image segmentation datasets. The experimental results indicated that our method outperformed state-of-the-art medical image segmentation methods, suggesting its effectiveness, robustness, and superiority. Meanwhile, our model has a smaller number of parameters and lower computational complexity than conventional 3D segmentation networks. The results confirmed that the model is capable of effective multi-scale feature learning and that the learned multi-scale features are useful for improving segmentation performance. We open-sourced our code, which can be found at https://github.com/AustinYuAo/MS-TCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Tempo发布了新的文献求助10
1秒前
3秒前
4秒前
我是老大应助飘逸店员采纳,获得10
5秒前
NPC-CBI发布了新的文献求助10
6秒前
Orange应助kkscanl采纳,获得30
7秒前
12秒前
阝火火完成签到,获得积分10
13秒前
飘逸店员完成签到,获得积分10
14秒前
16秒前
NPC-CBI完成签到,获得积分10
17秒前
结实的又亦完成签到,获得积分10
17秒前
飘逸店员发布了新的文献求助10
19秒前
20秒前
丘比特应助1211采纳,获得10
21秒前
22秒前
科研通AI5应助dolabmu采纳,获得20
23秒前
Richard_Li完成签到,获得积分20
25秒前
科研通AI5应助隐形鸣凤采纳,获得10
25秒前
28秒前
悲伤西米露完成签到,获得积分10
29秒前
Richard_Li发布了新的文献求助20
30秒前
33秒前
糖糖钰完成签到,获得积分10
33秒前
睡到自然醒完成签到 ,获得积分10
34秒前
1211发布了新的文献求助10
34秒前
陈俊雷完成签到 ,获得积分10
36秒前
爆米花应助张歆雨采纳,获得10
36秒前
端庄的连碧完成签到 ,获得积分10
36秒前
39秒前
伊雪儿发布了新的文献求助10
40秒前
李\J完成签到,获得积分10
40秒前
41秒前
照相机完成签到,获得积分10
43秒前
照相机发布了新的文献求助10
46秒前
Foxjker完成签到 ,获得积分10
48秒前
50秒前
伊雪儿完成签到,获得积分10
52秒前
55秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800297
求助须知:如何正确求助?哪些是违规求助? 3345583
关于积分的说明 10325859
捐赠科研通 3062057
什么是DOI,文献DOI怎么找? 1680741
邀请新用户注册赠送积分活动 807201
科研通“疑难数据库(出版商)”最低求助积分说明 763557