Adaptive Model Pruning for Communication and Computation Efficient Wireless Federated Learning

计算机科学 修剪 计算 无线 调度(生产过程) 边缘设备 趋同(经济学) 块(置换群论) 分布式计算 移动边缘计算 数学优化 强化学习 GSM演进的增强数据速率 人工智能 算法 电信 数学 操作系统 经济 几何学 生物 云计算 经济增长 农学
作者
Zhixiong Chen,Wenqiang Yi,Hyundong Shin,Arumugam Nallanathan
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:23 (7): 7582-7598 被引量:5
标识
DOI:10.1109/twc.2023.3342626
摘要

Most existing wireless federated learning (FL) studies focused on homogeneous model settings where devices train identical local models. In this setting, the devices with poor communication and computation capabilities may delay the global model update and degrade the performance of FL. Moreover, in the homogenous model settings, the scale of the global model is restricted by the device with the lowest capability. To tackle these challenges, this work proposes an adaptive model pruning-based FL (AMP-FL) framework, where the edge server dynamically generates sub-models by pruning the global model for devices' local training to adapt their heterogeneous computation capabilities and time-varying channel conditions. Since the involvement of diverse structures of devices' sub-models in the global model updating may negatively affect the training convergence, we propose compensating for the gradients of pruned model regions by devices' historical gradients. We then introduce an age of information (AoI) metric to characterize the staleness of local gradients and theoretically analyze the convergence behaviour of AMP-FL. The convergence bound suggests scheduling devices with large AoI of gradients and pruning the model regions with small AoI for devices to improve the learning performance. Inspired by this, we define a new objective function, i.e., the average AoI of local gradients, to transform the inexplicit global loss minimization problem into a tractable one for device scheduling, model pruning, and resource block (RB) allocation design. Through detailed analysis, we derive the optimal model pruning strategy and transform the RB allocation problem into equivalent linear programming that can be effectively solved. Experimental results demonstrate the effectiveness and superiority of the proposed approaches. The proposed AMP-FL is capable of achieving 1.9x and 1.6x speed up for FL on MNIST and CIFAR-10 datasets in comparison with the FL schemes with homogeneous model settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33完成签到 ,获得积分10
2秒前
皮皮发布了新的文献求助10
4秒前
仙人发布了新的文献求助30
4秒前
4秒前
swx完成签到,获得积分10
6秒前
7秒前
Aaron发布了新的文献求助10
8秒前
10秒前
12秒前
13秒前
猫毛完成签到,获得积分10
14秒前
科研狗的春天完成签到 ,获得积分10
14秒前
15秒前
魔幻的山河完成签到 ,获得积分10
16秒前
彭于晏应助麦冬粑粑采纳,获得10
18秒前
18秒前
Teen发布了新的文献求助10
22秒前
LONG完成签到 ,获得积分10
25秒前
李爱国应助良辰采纳,获得30
25秒前
25秒前
orixero应助科研通管家采纳,获得10
25秒前
不羁的风完成签到 ,获得积分10
26秒前
Joey发布了新的文献求助20
26秒前
科研通AI5应助活泼的绿蝶采纳,获得10
30秒前
宋芽芽u完成签到 ,获得积分10
31秒前
32秒前
33秒前
星露谷老农完成签到,获得积分10
33秒前
蔡6705完成签到,获得积分10
35秒前
37秒前
小马甲应助yangg采纳,获得10
37秒前
wtt0109发布了新的文献求助10
39秒前
麦冬粑粑完成签到,获得积分10
40秒前
ztt完成签到 ,获得积分10
41秒前
科研通AI5应助钵钵鸡采纳,获得20
42秒前
锦鲤完成签到 ,获得积分10
42秒前
43秒前
田様应助勤奋的金毛采纳,获得10
44秒前
老F发布了新的文献求助10
44秒前
ztt关注了科研通微信公众号
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782367
求助须知:如何正确求助?哪些是违规求助? 3327852
关于积分的说明 10233399
捐赠科研通 3042794
什么是DOI,文献DOI怎么找? 1670183
邀请新用户注册赠送积分活动 799658
科研通“疑难数据库(出版商)”最低求助积分说明 758883