A machine learning-aided framework for hierarchical management of building structural safety

计算机科学 建筑工程 知识管理 工程类 人工智能
作者
Guiwen Liu,Jie Liu,Neng Wang,Mi Pan,Youjia Tan,Yifan Zhang
出处
期刊:Engineering, Construction and Architectural Management [Emerald Publishing Limited]
标识
DOI:10.1108/ecam-10-2024-1344
摘要

Purpose Insufficient attention to the building’s structural safety conditions has led to loss of life and property as well as disastrous social impacts. Although some countries or regions have developed building structural safety management policies, they seem to lack a solid decision-making basis and efficiency. To address this, this paper aims to establish a data-driven framework to achieve the economic, efficient and accurate management of building structural safety. Design/methodology/approach This paper proposes a novel framework for hierarchical management of building structural safety using machine learning approaches. A case study in Chongqing, China, is adopted to demonstrate its application and prove its feasibility. The framework considers the database, prediction of structural safety, hierarchical management and iteration. Findings The results indicate the effectiveness of the proposed framework, which facilitates the prediction of an existing building’s safety condition using limited fundamental information, allowing for the design of hierarchical management that encompasses structure, mechanisms and management measures. Furthermore, iteration mechanisms introduced allow for continuous improvement and adaptation over time. Practical implications By introducing this framework, hierarchical management actions could be taken to distinguished buildings, optimizing resource allocation and enhancing the effectiveness of engineering decision-making for maintenance. This proposed framework also offers practical guidance for decisions regarding new building construction. Originality/value The proposed framework provides valuable insights for research and practice in intelligent and cost-effective hierarchical management of structural safety for buildings and contributes to urban renewal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杭76应助顺顺顺采纳,获得10
刚刚
燕燕发布了新的文献求助10
1秒前
1秒前
戴翠琼完成签到,获得积分10
1秒前
1秒前
尤瑟夫发布了新的文献求助10
1秒前
2秒前
2秒前
小橘应助郭嘉仪采纳,获得10
2秒前
李健应助郭嘉仪采纳,获得10
2秒前
2秒前
niudayun发布了新的文献求助30
2秒前
不安溪灵完成签到,获得积分10
2秒前
6260完成签到,获得积分10
3秒前
悠南完成签到 ,获得积分10
3秒前
打打应助陈一一采纳,获得10
3秒前
小熊完成签到,获得积分10
4秒前
月落完成签到 ,获得积分10
4秒前
大力天荷完成签到,获得积分10
4秒前
华仔应助JIAYIWANG采纳,获得10
4秒前
4秒前
ding应助宋姜喻采纳,获得10
5秒前
哈利波特大完成签到,获得积分10
5秒前
hauward发布了新的文献求助10
5秒前
秋山伊夫完成签到,获得积分10
5秒前
5秒前
上官若男应助杰尼发财采纳,获得10
6秒前
7秒前
7秒前
Darius完成签到,获得积分10
7秒前
Caleb完成签到,获得积分10
7秒前
发发发完成签到,获得积分10
7秒前
CCYL完成签到,获得积分20
7秒前
灰灰发布了新的文献求助10
7秒前
Vicky发布了新的文献求助10
8秒前
黄佳嘉完成签到,获得积分10
8秒前
dingtao发布了新的文献求助10
8秒前
FashionBoy应助靳欣妍采纳,获得30
9秒前
Hello应助蜘蛛采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4997899
求助须知:如何正确求助?哪些是违规求助? 4243964
关于积分的说明 13220859
捐赠科研通 4041144
什么是DOI,文献DOI怎么找? 2211083
邀请新用户注册赠送积分活动 1221678
关于科研通互助平台的介绍 1141546