Smart waste management and air pollution forecasting: Harnessing Internet of things and fully Elman neural network

人工神经网络 物联网 互联网 空气污染 污染 环境科学 计算机科学 人工智能 计算机安全 万维网 生态学 生物
作者
Bhagyashree Madan,Sruthi Nair,Nikita Katariya,A. Mehta,Purva Gogte
出处
期刊:Waste Management & Research [SAGE]
卷期号:43 (8): 1193-1205 被引量:3
标识
DOI:10.1177/0734242x241313286
摘要

As the Internet of things (IoT) continues to transform modern technologies, innovative applications in waste management and air pollution monitoring are becoming critical for sustainable development. In this manuscript, a novel smart waste management (SWM) and air pollution forecasting (APF) system is proposed by leveraging IoT sensors and the fully Elman neural network (FENN) model, termed as SWM–APF–IoT–FENN. The system integrates real-time data from waste and air quality sensors including weight, trash level, odour and carbon monoxide (CO) that are collected from smart bins connected to a Google Cloud Server. Here, the MaxAbsScaler is employed for data normalization, ensuring consistent feature representation. Subsequently, the atmospheric contaminants surrounding the waste receptacles were observed using a FENN model. This model is utilized to predict the atmospheric concentration of CO and categorize the bin status as filled, half-filled and unfilled. Moreover, the weight parameter of the FENN model is tuned using the secretary bird optimization algorithm for better prediction results. The implementation of the proposed methodology is done in Python tool, and the performance metrics are analysed. Experimental results demonstrate significant improvements in performance, achieving 15.65%, 18.45% and 21.09% higher accuracy, 18.14%, 20.14% and 24.01% higher F-Measure, 23.64%, 24.29% and 29.34% higher False Acceptance Rate (FAR), 25.00%, 27.09% and 31.74% higher precision, 20.64%, 22.45% and 28.64% higher sensitivity, 26.04%, 28.65% and 32.74% higher specificity, 9.45%, 7.38% and 4.05% reduced computational time than the conventional approaches such as Elman neural network, recurrent artificial neural network and long short-term memory with gated recurrent unit, respectively. Thus, the proposed method offers a streamlined, efficient framework for real-time waste management and pollution forecasting, addressing critical environmental challenges.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123321完成签到 ,获得积分10
刚刚
秋殤完成签到 ,获得积分10
1秒前
高健伟完成签到 ,获得积分10
2秒前
XU博士完成签到,获得积分10
2秒前
apple发布了新的文献求助10
3秒前
好好完成签到,获得积分10
4秒前
安风完成签到 ,获得积分10
4秒前
森林木完成签到,获得积分10
5秒前
陌上尘开完成签到 ,获得积分10
6秒前
Levi李完成签到 ,获得积分10
6秒前
今年我必胖20斤完成签到,获得积分10
7秒前
mzhmhy完成签到,获得积分10
7秒前
ZERO完成签到 ,获得积分10
7秒前
清秋九应助帆帆帆采纳,获得10
7秒前
8秒前
Sh_Wen完成签到 ,获得积分10
8秒前
清秋九应助知性冰淇淋采纳,获得10
10秒前
清秋九应助知性冰淇淋采纳,获得10
10秒前
清秋九应助知性冰淇淋采纳,获得10
10秒前
清秋九应助知性冰淇淋采纳,获得10
10秒前
清秋九应助知性冰淇淋采纳,获得10
10秒前
XJY完成签到,获得积分10
11秒前
wweiweili完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
李美玥完成签到 ,获得积分10
13秒前
火星上醉山完成签到 ,获得积分10
16秒前
apple完成签到,获得积分10
17秒前
18秒前
乔青完成签到,获得积分10
18秒前
fluttershy完成签到 ,获得积分10
21秒前
22秒前
Herrily完成签到,获得积分10
22秒前
wenhuanwenxian完成签到 ,获得积分10
23秒前
23秒前
WWL完成签到 ,获得积分10
24秒前
孙一完成签到,获得积分10
26秒前
火星上的雨柏完成签到 ,获得积分10
27秒前
NMR完成签到,获得积分10
28秒前
XZZH完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612098
求助须知:如何正确求助?哪些是违规求助? 4696213
关于积分的说明 14890703
捐赠科研通 4731729
什么是DOI,文献DOI怎么找? 2546144
邀请新用户注册赠送积分活动 1510441
关于科研通互助平台的介绍 1473331