Raman Spectroscopy and Exosome-Based Machine Learning Predicts the Efficacy of Neoadjuvant Therapy for HER2-Positive Breast Cancer

外体 乳腺癌 微泡 肿瘤科 新辅助治疗 曲妥珠单抗 内科学 癌症 预测值 化学 医学 小RNA 生物化学 基因
作者
Yining Jia,Yongqi Li,Xue Bai,Liyuan Liu,Ying Shan,Fei Wang,Zhigang Yu,Chao Zheng
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:97 (2): 1374-1385 被引量:11
标识
DOI:10.1021/acs.analchem.4c05833
摘要

Early prediction of the neoadjuvant therapy efficacy for HER2-positive breast cancer is crucial for personalizing treatment and enhancing patient outcomes. Exosomes, which play a role in tumor development and treatment response, are emerging as potential biomarkers for cancer diagnosis and efficacy prediction. Despite their promise, current exosome detection and isolation methods are cumbersome and time-consuming and often yield limited purity and quantity. In this study, we employed Raman spectroscopy to analyze the molecular changes in exosomes from the sera of HER2-positive breast cancer patients before and after two cycles of neoadjuvant therapy. Utilizing machine learning techniques (PCA, LDA, and SVM), we developed a predictive model with an AUC value exceeding 0.89. Additionally, we introduced an innovative HER2-positive exosome capture and detection system, termed Magnetic beads@HER2-Exos@HER2-SERS detection nanoprobes (HER2-MEDN). This system enabled us to efficiently extract and analyze HER2-positive exosomes, refining our predictive model to achieve an accuracy greater than 0.94. Our study has demonstrated the potential of the HER2-MEDN system in accurately predicting early treatment response, offering novel insights and methodologies for assessing the efficacy of neoadjuvant therapy in HER2-positive breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoxutongxue完成签到,获得积分10
1秒前
指尖的阿里阿德涅完成签到,获得积分10
1秒前
ll完成签到,获得积分20
1秒前
Akim应助初余采纳,获得10
1秒前
顺利一江完成签到,获得积分10
2秒前
科研通AI2S应助正直沧海采纳,获得10
2秒前
2秒前
3秒前
orixero应助June采纳,获得10
3秒前
tt825发布了新的文献求助10
3秒前
3秒前
Li完成签到,获得积分10
3秒前
科研通AI6应助Xhnz采纳,获得10
3秒前
浮游应助阡陌采纳,获得10
3秒前
4秒前
萧萧落木天完成签到,获得积分10
4秒前
orixero应助一颗西柚采纳,获得10
4秒前
4秒前
厚皮发布了新的文献求助40
5秒前
5秒前
陈末应助昏睡的以寒采纳,获得10
5秒前
chowjb完成签到,获得积分10
5秒前
超级的鞅发布了新的文献求助10
6秒前
6秒前
情怀应助STIAN采纳,获得10
6秒前
6秒前
6秒前
6秒前
OFish发布了新的文献求助10
6秒前
谨慎海蓝发布了新的文献求助10
7秒前
丘比特应助xiaohei采纳,获得10
7秒前
唐一发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
小何完成签到,获得积分10
8秒前
8秒前
文艺的忆霜完成签到,获得积分20
9秒前
9秒前
我是老大应助超级的鞅采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430333
求助须知:如何正确求助?哪些是违规求助? 4543541
关于积分的说明 14187728
捐赠科研通 4461680
什么是DOI,文献DOI怎么找? 2446276
邀请新用户注册赠送积分活动 1437642
关于科研通互助平台的介绍 1414420