细菌
二酰甘油激酶
生物化学
化学
食品科学
碳纤维
脂肪酸
生物
酶
遗传学
材料科学
蛋白激酶C
复合数
复合材料
作者
Stefan Gorka,Alberto Canarini,Hannes Schmidt,Christina Kaiser
标识
DOI:10.1101/2024.12.02.626346
摘要
Carbon storage is a common strategy of soil microbes to cope with resource fluctuations. Fungi use neutral lipids (triacylglycerols, TAGs) for storage, which can be quantified via their derived fatty acids (NLFAs). NLFAs specific to bacteria can also be abundant in soils, but are rarely analysed as soil bacteria are assumed to not store TAGs. Instead, bacterial NLFAs are thought to derive from degraded phospholipids (diacylglycerols, DAGs), and thus indicate bacterial necromass, but this interpretation lacks evidence. In this perspective, we synthesise knowledge from the literature and our own experimental results on the origin of soil bacterial NLFAs. In sum, we provide evidence that bacterial NLFAs are predominantly derived from TAGs used for carbon storage: (1) Several pure culture studies provide evidence for TAG production in selected bacterial isolates. (2) Screening of genomes showed that wax ester synthase/diacylglycerol acyltransferases, which mediate the last step of TAG synthesis, are abundant in bacterial isolates from soil, suggesting a widespread genetic capability to produce TAGs. (3) We experimentally created conditions of excess labile carbon by adding isotopically labelled glucose to soil. Glucose-13C was rapidly allocated into bacterial NLFAs, with higher relative enrichment than phospholipid-derived fatty acids, indicating storage. (4) DAGs are not necessarily produced, and may only be intermediate compounds, during phospholipid degradation. We conclude that soil bacterial NLFAs are mainly derived from storage compounds, but a potential contribution from degraded phospholipids needs further validation. Isotopic labelling could resolve this, making NLFAs a valuable biomarker for microbial storage compounds in soil.
科研通智能强力驱动
Strongly Powered by AbleSci AI