计算机科学
变压器
深度学习
人工智能
卷积神经网络
空间分析
旅游
机器学习
工程类
地理
电压
电气工程
遥感
考古
作者
Jiaying Chen,Cheng Li,Liyao Huang,Weimin Zheng
出处
期刊:Tourism Review
[Emerald Publishing Limited]
日期:2023-11-24
被引量:4
标识
DOI:10.1108/tr-05-2023-0275
摘要
Purpose Incorporating dynamic spatial effects exhibits considerable potential in improving the accuracy of forecasting tourism demands. This study aims to propose an innovative deep learning model for capturing dynamic spatial effects. Design/methodology/approach A novel deep learning model founded on the transformer architecture, called the spatiotemporal transformer network, is presented. This model has three components: the temporal transformer, spatial transformer and spatiotemporal fusion modules. The dynamic temporal dependencies of each attraction are extracted efficiently by the temporal transformer module. The dynamic spatial correlations between attractions are extracted efficiently by the spatial transformer module. The extracted dynamic temporal and spatial features are fused in a learnable manner in the spatiotemporal fusion module. Convolutional operations are implemented to generate the final forecasts. Findings The results indicate that the proposed model performs better in forecasting accuracy than some popular benchmark models, demonstrating its significant forecasting performance. Incorporating dynamic spatiotemporal features is an effective strategy for improving forecasting. It can provide an important reference to related studies. Practical implications The proposed model leverages high-frequency data to achieve accurate predictions at the micro level by incorporating dynamic spatial effects. Destination managers should fully consider the dynamic spatial effects of attractions when planning and marketing to promote tourism resources. Originality/value This study incorporates dynamic spatial effects into tourism demand forecasting models by using a transformer neural network. It advances the development of methodologies in related fields.
科研通智能强力驱动
Strongly Powered by AbleSci AI