Brainomaly: Unsupervised Neurologic Disease Detection Utilizing Unannotated T1-weighted Brain MR Images

计算机科学 人工智能 模式识别(心理学) 脑病 计算机视觉 疾病 医学 病理
作者
Md Mahfuzur Rahman Siddiquee,Jay Shah,Teresa Wu,Catherine D. Chong,Todd J. Schwedt,Gina Dumkrieger,Simona Nikolova,Baoxin Li
标识
DOI:10.1109/wacv57701.2024.00740
摘要

Harnessing the power of deep neural networks in the medical imaging domain is challenging due to the difficulties in acquiring large annotated datasets, especially for rare diseases, which involve high costs, time, and effort for annotation. Unsupervised disease detection methods, such as anomaly detection, can significantly reduce human effort in these scenarios. While anomaly detection typically focuses on learning from images of healthy subjects only, real-world situations often present unannotated datasets with a mixture of healthy and diseased subjects. Recent studies have demonstrated that utilizing such unannotated images can improve unsupervised disease and anomaly detection. However, these methods do not utilize knowledge specific to registered neuroimages, resulting in a subpar performance in neurologic disease detection. To address this limitation, we propose Brainomaly, a GAN-based image-to-image translation method specifically designed for neurologic disease detection. Brainomaly not only offers tailored image-to-image translation suitable for neuroimages but also leverages unannotated mixed images to achieve superior neurologic disease detection. Additionally, we address the issue of model selection for inference without annotated samples by proposing a pseudo-AUC metric, further enhancing Brainomaly's detection performance. Extensive experiments and ablation studies demonstrate that Brainomaly outperforms existing state-of-the-art unsupervised disease and anomaly detection methods by significant margins in Alzheimer's disease detection using a publicly available dataset and headache detection using an institutional dataset. The code is available from https://github.com/mahfuzmohammad/Brainomaly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助ni采纳,获得10
1秒前
guo完成签到 ,获得积分10
3秒前
3秒前
4秒前
深情安青应助LY采纳,获得10
4秒前
认真乐双完成签到,获得积分10
5秒前
5秒前
5秒前
doewi发布了新的文献求助20
5秒前
云田完成签到,获得积分10
5秒前
Victoria完成签到,获得积分10
5秒前
上官若男应助小小邹采纳,获得20
7秒前
7秒前
上官若男应助舟舟采纳,获得10
8秒前
8秒前
8R60d8应助Victoria采纳,获得10
9秒前
卜卜脆完成签到,获得积分10
10秒前
dhts应助烤番薯采纳,获得10
10秒前
ayan发布了新的文献求助10
11秒前
11秒前
普里克先森完成签到 ,获得积分10
12秒前
12秒前
大个应助深情海安采纳,获得10
12秒前
12秒前
3113129605完成签到 ,获得积分10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
江峰应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
赵无情应助科研通管家采纳,获得10
13秒前
彳亍1117应助浓雾采纳,获得10
13秒前
许甜甜鸭应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
间羟基苄醇完成签到,获得积分10
13秒前
桐桐应助科研通管家采纳,获得30
13秒前
英姑应助科研通管家采纳,获得10
13秒前
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835479
求助须知:如何正确求助?哪些是违规求助? 3377803
关于积分的说明 10500774
捐赠科研通 3097386
什么是DOI,文献DOI怎么找? 1705784
邀请新用户注册赠送积分活动 820705
科研通“疑难数据库(出版商)”最低求助积分说明 772219