ACDMSR: Accelerated Conditional Diffusion Models for Single Image Super-Resolution

扩散 超分辨率 计算机科学 图像(数学) 算法 图像分辨率 计算机视觉 电子工程 人工智能 物理 工程类 热力学
作者
Axi Niu,Trung X. Pham,Kang Zhang,Jinqiu Sun,Yu Zhu,Qingsen Yan,In So Kweon,Yanning Zhang
出处
期刊:IEEE Transactions on Broadcasting [Institute of Electrical and Electronics Engineers]
卷期号:70 (2): 492-504 被引量:11
标识
DOI:10.1109/tbc.2024.3374122
摘要

Diffusion models have gained significant popularity for image-to-image translation tasks. Previous efforts applying diffusion models to image super-resolution have demonstrated that iteratively refining pure Gaussian noise using a U-Net architecture trained on denoising at various noise levels can yield satisfactory high-resolution images from low-resolution inputs. However, this iterative refinement process comes with the drawback of low inference speed, which strongly limits its applications. To speed up inference and further enhance the performance, our research revisits diffusion models in image super-resolution and proposes a straightforward yet significant diffusion model-based super-resolution method called ACDMSR (accelerated conditional diffusion model for image super-resolution). Specifically, we adopt existing image super-resolution methods and finetune them to provide conditional images from given low-resolution images, which can help to achieve better high-resolution results than just taking low-resolution images as conditional images. Then we adapt the diffusion model to perform super-resolution through a deterministic iterative denoising process, which helps to strongly decline the inference time. We demonstrate that our method surpasses previous attempts in qualitative and quantitative results through extensive experiments conducted on benchmark datasets such as Set5, Set14, Urban100, BSD100, and Manga109. Moreover, our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力书包完成签到 ,获得积分10
1秒前
Robin95发布了新的文献求助10
1秒前
今后应助小文子采纳,获得10
2秒前
2秒前
2秒前
ming应助polarisblue采纳,获得10
4秒前
风中的逊完成签到,获得积分10
4秒前
lala发布了新的文献求助10
4秒前
5秒前
5秒前
嘻嘻嘻完成签到,获得积分10
5秒前
ibigbird完成签到,获得积分10
6秒前
6秒前
派大星发布了新的文献求助10
7秒前
7秒前
8秒前
iNk应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
细腻慕儿完成签到 ,获得积分10
10秒前
ibigbird发布了新的文献求助10
10秒前
10秒前
方的圆发布了新的文献求助30
11秒前
11秒前
12秒前
张琦发布了新的文献求助10
12秒前
满意的天完成签到 ,获得积分10
13秒前
科研完成签到,获得积分10
14秒前
15秒前
冷傲语风完成签到,获得积分20
16秒前
nihil发布了新的文献求助10
16秒前
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794983
求助须知:如何正确求助?哪些是违规求助? 3339916
关于积分的说明 10298125
捐赠科研通 3056504
什么是DOI,文献DOI怎么找? 1677041
邀请新用户注册赠送积分活动 805105
科研通“疑难数据库(出版商)”最低求助积分说明 762333