亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Indrnn-Based Data-Driven Modeling Integrated With Physical Knowledge for Engine Performance Monitoring

涡扇发动机 人工神经网络 推力 组分(热力学) 喷嘴 性能预测 喷气发动机 计算机科学 涡轮机 残余物 瞬态(计算机编程) 工程类 汽车工程 模拟 人工智能 航空航天工程 物理 算法 热力学 操作系统
作者
Dasheng Xiao,Hong Xiao,Zhanxue Wang
出处
期刊:Journal of engineering for gas turbines and power [ASM International]
卷期号:147 (2)
标识
DOI:10.1115/1.4066292
摘要

Abstract Monitoring the whole performance status of aircraft engines is of paramount importance for ensuring flight safety, control system, and prognostic health management. This work introduced an aircraft engine deep learning (DL) model that integrated with engine physical knowledge. First, component networks were established for each engine component (e.g., fan, turbine, nozzle) using the independently recurrent neural network (IndRNN), self-attention mechanism, and residual network. Subsequently, based on the physical spatial alignment of engine components, the data transfer between component networks was determined to establish the whole engine model. Case studies were conducted on exhaust gas temperature (EGT) prediction for two civil aircraft engines and thrust prediction for another two turbofan engines. When processing the actual engine running data, the data augmentation method was invested to address the issue of nonuniform distribution of engine working states in the training data. Compared with three pure data-driven models based on IndRNN, recurrent neural network, and long short-term memory (LSTM), the model introduced in this work demonstrated superior precision in both steady states and transient states. Specifically, the achieved mean absolute relative error (MARE) was 0.54% for EGT prediction and 0.41% for thrust prediction. When adjusting the time-steps, the introduced model showed steadier predictions with minimal MARE fluctuation compared to the three pure data-driven models, enhancing overall predictive stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YifanWang应助科研通管家采纳,获得10
3秒前
YifanWang应助科研通管家采纳,获得10
3秒前
LU应助Wei采纳,获得10
25秒前
黑摄会阿Fay完成签到,获得积分10
1分钟前
1分钟前
starry发布了新的文献求助30
1分钟前
YifanWang应助科研通管家采纳,获得20
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
红橙黄绿蓝靛紫111完成签到,获得积分10
2分钟前
kuoping完成签到,获得积分0
2分钟前
Wei发布了新的文献求助50
3分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
zsmj23完成签到 ,获得积分0
4分钟前
NexusExplorer应助liudy采纳,获得10
4分钟前
彭于晏应助andrew12399采纳,获得10
4分钟前
4分钟前
liudy完成签到,获得积分10
4分钟前
liudy发布了新的文献求助10
4分钟前
4分钟前
andrew12399完成签到,获得积分10
4分钟前
andrew12399发布了新的文献求助10
4分钟前
Eatanicecube完成签到,获得积分10
5分钟前
af完成签到,获得积分10
5分钟前
针真滴完成签到 ,获得积分10
5分钟前
5分钟前
YifanWang应助科研通管家采纳,获得20
6分钟前
FashionBoy应助科研通管家采纳,获得10
6分钟前
YifanWang应助科研通管家采纳,获得20
6分钟前
YifanWang应助科研通管家采纳,获得20
6分钟前
YifanWang应助科研通管家采纳,获得20
6分钟前
科研通AI5应助安详宛筠采纳,获得10
6分钟前
6分钟前
小燕子完成签到 ,获得积分10
6分钟前
安详宛筠发布了新的文献求助10
6分钟前
apt完成签到 ,获得积分10
7分钟前
balko完成签到,获得积分10
7分钟前
7分钟前
ST发布了新的文献求助10
7分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5211132
求助须知:如何正确求助?哪些是违规求助? 4387741
关于积分的说明 13663104
捐赠科研通 4247756
什么是DOI,文献DOI怎么找? 2330530
邀请新用户注册赠送积分活动 1328265
关于科研通互助平台的介绍 1281116