AI-enabled and multimodal data driven smart health monitoring of wind power systems: A case study

特征(语言学) 过度拟合 人工智能 故障检测与隔离 振动 计算机科学 断层(地质) 工程类 情态动词 计算机视觉 人工神经网络 声学 哲学 地震学 执行机构 地质学 化学 高分子化学 物理 语言学
作者
Zhao Yang,Yanjie Zhang,Zeqiang Li,Lingguo Bu,Han Su
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:56: 102018-102018 被引量:30
标识
DOI:10.1016/j.aei.2023.102018
摘要

The development of AI has enabled the fault detection of industrial components to be achieved through the combination with deep learning. A detection method combined with deep learning has also emerged for the fault detection of fan blades, such as models based on neural networks using the appearance or sound of the blades. However, the detection model obtained from a single data type often has limitations, such as low accuracy and overfitting. This is also the problem with fan blade detection. In contrast, multimodal data fusion detection models are often more stable. The modality diversity of blade diagnosis is strong, and it can be achieved from multiple modalities such as image, sound, and vibration. To improve the accuracy of fault diagnosis of fan blades, this article proposes a multimodal double-layer detection system (MTDS) based on decision-level and feature-level fusion. The system includes a wind turbine simulation platform and a multimodal detection system. It mainly obtains different modal data of the simulated wind turbine from the image, sound, and vibration signals, including blade images through unmanned aerial vehicle photography, blade vibration signals through electronic vibrators, and blade sound signals through microphones. The highly correlated sound and vibration modal data are fused at the feature level, and a detection model based on the sound and vibration mixed mode is implemented using a sound-vibration-CNN (SV-CNN) proposed in this case. Then, a detection model of the image mode is trained based on the blade image using a Convolution Block Attention Module ResNet (CBAM-ResNet) network. Finally, the detection input of the two modal models is fed into a perceptron to obtain the final prediction result, and the decision-level fusion is implemented to achieve fan blade detection based on multimodal, namely the implementation of MTDS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤恳冰淇淋完成签到 ,获得积分10
刚刚
无敌学术王王完成签到,获得积分10
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
wei发布了新的文献求助10
1秒前
呆萌太阳完成签到,获得积分10
2秒前
发文章应助ieee拯救者采纳,获得50
2秒前
流砂完成签到,获得积分10
2秒前
浮游应助北岭梅花香到骨采纳,获得10
2秒前
zhaoxi完成签到,获得积分10
3秒前
swy发布了新的文献求助10
3秒前
迷路柜子完成签到 ,获得积分10
3秒前
4秒前
小年完成签到,获得积分10
4秒前
艾妮妮完成签到,获得积分10
4秒前
卑微打工仔完成签到,获得积分10
4秒前
实验顺利完成签到,获得积分10
4秒前
Estella完成签到,获得积分10
5秒前
阿玉完成签到,获得积分10
5秒前
丫丫发布了新的文献求助10
5秒前
tca2204完成签到,获得积分10
5秒前
西西完成签到,获得积分10
6秒前
AIMS完成签到,获得积分0
7秒前
zehua309完成签到,获得积分10
7秒前
阳阳发布了新的文献求助10
7秒前
英勇凝旋完成签到,获得积分10
8秒前
cccc完成签到,获得积分20
9秒前
9秒前
钰小憨完成签到,获得积分10
9秒前
沙糖桔完成签到,获得积分10
9秒前
upupup完成签到,获得积分10
9秒前
虚拟的半梦完成签到,获得积分10
9秒前
9秒前
10秒前
归海一刀完成签到,获得积分10
10秒前
陈麦子完成签到,获得积分10
11秒前
Liusiqi发布了新的文献求助10
11秒前
12秒前
ZYH完成签到,获得积分10
12秒前
等待孤云完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5544143
求助须知:如何正确求助?哪些是违规求助? 4630014
关于积分的说明 14613895
捐赠科研通 4571661
什么是DOI,文献DOI怎么找? 2506455
邀请新用户注册赠送积分活动 1483446
关于科研通互助平台的介绍 1455045